Home Defective repository
Defective repository

Defective repository

We constructed a repository containing 164 defective APIs and 106 API combinations. In this page, we release the pipelines,variants and library versions which has performance inconsistence with the defective APIs and combinations. For more details, visit GitHub Repo

APIsPerformanceLibrariesPipeline:variantVersionsType
sklearn.preprocessing.StandardScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]1077:2, 1077:3scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]1077:6, 1077:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
xgboost.XGBClassifier,memory baseline better,[xgboost]1079:1, 1079:2, 1079:3, 1079:4, 1079:5, 1079:6, 1134:4, 1134:5, 1134:6, 1359:2, 3486:4, 17638:1, 17638:2, 17638:3, 17638:4, 17638:5, 17638:6, 19563:3, 19563:5, 19853:2, 20072:2, 20096:2, 20258:2, 20258:6, 20421:4, 20433:2, 20449:2, 20500:2, 20549:2, 20650:2, 24894:1, 24969:1, 24969:2xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Individual
sklearn.preprocessing.MinMaxScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline,time baseline better,memory baseline better,[scikit-learn]1079:2, 1079:3scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline,time baseline better,[scikit-learn]1079:4scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline,time variant better,[scikit-learn]1079:5scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline,time variant better,memory variant better,[scikit-learn]1079:6scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline,time baseline better,memory variant better,[scikit-learn]1079:7scikit-learn:1.0.1Individual
xgboost.XGBClassifier,time baseline better,memory baseline better,score inconsistent[xgboost]1079:7, 1134:7, 17676:7, 17718:7, 24528:7, 24533:7, 24572:7, 25132:2, 25132:5, 25132:7xgboost:0.90, xgboost:1.4.2, xgboost:1.1.1Individual
lightgbm.LGBMRegressor, lightgbm.LGBMClassifier,memory variant better,score inconsistent[lightgbm]1080:2, 1080:3, 1080:4lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0Individual
lightgbm.LGBMRegressor, lightgbm.LGBMClassifier,time variant better,memory variant better,score inconsistent[lightgbm]1080:5, 1080:6lightgbm:2.3.1, lightgbm:2.2.3Individual
lightgbm.LGBMRegressor, lightgbm.LGBMClassifier,time baseline better,memory variant better,score inconsistent[lightgbm]1080:7lightgbm:2.1.2Individual
xgboost.XGBClassifier,memory variant better,[xgboost]1092:3, 1121:4, 1134:1, 1134:2, 1134:3, 17621:1, 17621:2, 17761:4, 17761:5, 19563:4, 24894:5, 24894:6, 24969:4xgboost:1.3.3, xgboost:1.2.1, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.1.1, xgboost:1.0.2Individual
xgboost.XGBClassifier,time baseline better,[xgboost]1092:6, 1121:6, 1385:3, 1385:4, 3504:1, 17621:7, 17761:2, 17770:4, 19563:7, 19632:6, 19853:4, 20041:4, 20072:3, 20096:3, 20096:4, 20449:3, 20500:7, 20549:6, 20650:4, 24619:2, 25136:2, 25136:3xgboost:1.0.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.5.1, xgboost:0.90, xgboost:1.4.2Individual
xgboost.XGBClassifier,score inconsistent[xgboost]1092:7, 1121:5, 1359:6, 1385:6, 3223:4, 3438:5, 17770:7, 20041:7, 20132:7, 20433:5, 20650:7, 20683:3, 24619:5, 24894:3xgboost:0.90, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.3.3Individual
xgboost.XGBClassifier,time baseline better,score inconsistent[xgboost]1093:7, 3223:7, 3438:4, 3445:7, 3452:5, 20041:2, 20258:7, 20433:7xgboost:0.90, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.4.2Individual
lightgbm.Dataset, lightgbm.train,time variant better,memory variant better,score inconsistent[lightgbm]1097:1, 1097:2, 1097:3, 1097:4, 1097:5, 1465:3, 1465:4, 1465:5, 1465:6, 1465:7, 1510:1, 1510:2, 1510:3, 1510:4, 1511:1, 1511:2, 1511:3, 1511:4, 8473:1, 8473:3, 17654:1, 17654:2, 17654:3, 17654:4, 17654:5, 17654:6, 17655:3, 17655:4, 17655:5, 17700:1, 17700:2, 17700:3, 17700:4, 17700:5, 17730:2, 17730:3, 17730:4, 17730:5, 17730:6, 17730:7, 17744:7, 20563:6, 20563:7, 24597:1, 24597:2, 24597:3, 24597:4, 24597:5, 24970:3, 24970:4lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.2.3, lightgbm:2.1.2Individual
lightgbm.Dataset, lightgbm.train,time variant better,memory baseline better,score inconsistent[lightgbm]1097:6, 1097:7, 8473:7, 17655:6, 17700:6, 17700:7, 24014:1, 24014:2, 24014:3, 24014:4, 24014:5, 24014:6, 24324:7, 24452:7, 24484:7, 24597:6, 24597:7lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1Individual
lightgbm.LGBMClassifier,time variant better,memory variant better,score inconsistent[lightgbm]1098:1, 1098:2, 1098:5, 8226:1, 17649:1, 17649:2, 17649:3, 24514:1, 24514:2, 24571:1, 24571:2, 24571:3, 24571:4, 24571:5, 24605:3, 24605:4, 24677:1, 24677:2, 24677:3, 24677:4, 25134:2, 25134:4, 25134:6, 25134:7lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:2.3.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.2.3, lightgbm:2.1.2Individual
lightgbm.LGBMClassifier,memory variant better,score inconsistent[lightgbm]1098:3, 1255:1, 17649:4, 24514:3, 24514:4, 24605:1, 24605:2, 24605:5, 24605:6, 24605:7, 25003:6, 25003:7lightgbm:3.1.1, lightgbm:3.3.1, lightgbm:3.0.0, lightgbm:3.2.1, lightgbm:2.3.1, lightgbm:2.2.3, lightgbm:2.1.2Individual
lightgbm.LGBMClassifier,time variant better,memory variant better,[lightgbm]1098:4, 25003:4lightgbm:3.0.0Individual
lightgbm.LGBMClassifier,time variant better,score inconsistent[lightgbm]1098:6, 1098:7, 24575:1, 24575:3, 24575:4lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.3.1, lightgbm:3.1.1, lightgbm:3.0.0Individual
sklearn.impute.SimpleImputer, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.model_selection.cross_val_score,memory baseline better,[scikit-learn]1116:2scikit-learn:0.24.2Individual
sklearn.impute.SimpleImputer, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.model_selection.cross_val_score,memory variant better,[scikit-learn]1116:6scikit-learn:0.21.3Individual
sklearn.impute.SimpleImputer, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.model_selection.cross_val_score,time variant better,memory variant better,[scikit-learn]1116:7scikit-learn:0.20.3Individual
lightgbm.Dataset, lightgbm.train,time variant better,score inconsistent[lightgbm]1118:1, 1118:2, 1118:3, 1118:4, 1118:6, 1118:7, 1465:1, 1465:2, 10587:1, 10587:2, 10587:3, 10587:5, 10587:6, 10587:7, 17655:1, 17655:2, 20563:5lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:2.3.1Individual
imblearn.over_sampling.SMOTE,time variant better,score inconsistent[imbalanced-learn]1118:2imbalanced-learn:0.8.1Individual
lightgbm.Dataset, lightgbm.train,time variant better,[lightgbm]1118:5, 1692:3, 1692:6, 19597:2, 20070:4, 20563:1, 20563:2, 20563:3, 24452:1, 24452:3, 24452:5, 24484:1, 24484:2, 24484:3, 24484:4, 24484:5, 31897:5, 31905:7lightgbm:2.3.1, lightgbm:3.1.1, lightgbm:2.2.3, lightgbm:3.2.1, lightgbm:3.0.0, lightgbm:3.3.1, lightgbm:2.1.2Individual
xgboost.XGBClassifier,time variant better,[xgboost]1121:3, 1359:7, 3445:4, 3445:5, 17621:4, 17621:5, 17621:6, 20072:5, 20500:5, 24588:1, 24588:2xgboost:1.3.3, xgboost:0.90, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]1125:4scikit-learn:0.22.1Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]1125:6, 1125:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
lightgbm.Dataset, lightgbm.train,time variant better,memory baseline better,[lightgbm]1127:1, 1127:2, 1127:3, 17655:7, 24484:6lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:2.1.2, lightgbm:2.2.3Individual
lightgbm.Dataset, lightgbm.train,memory baseline better,[lightgbm]1127:4, 8665:6, 8665:7, 16469:6, 19541:6, 31771:7lightgbm:3.0.0, lightgbm:2.2.3, lightgbm:2.1.2Individual
lightgbm.Dataset, lightgbm.train,memory baseline better,score inconsistent[lightgbm]1127:5, 1127:6, 1127:7, 1510:6, 1510:7, 1511:6, 1511:7, 16744:1, 16744:2, 19597:6, 19597:7lightgbm:2.3.1, lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.3.1, lightgbm:3.2.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]1164:3scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]1164:5scikit-learn:0.22Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.impute.SimpleImputer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]1164:7scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.tree.DecisionTreeClassifier, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]1182:4, 1182:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.ensemble.RandomForestClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.tree.DecisionTreeClassifier, sklearn.preprocessing.LabelEncoder,time variant better,score inconsistent[scikit-learn]1182:6, 1182:8scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.tree.DecisionTreeClassifier, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]1182:7scikit-learn:0.20.3Individual
lightgbm.Dataset, lightgbm.train, lightgbm.LGBMClassifier,time variant better,score inconsistent[lightgbm]1205:1, 1205:2, 1205:3, 1205:4, 1205:5, 1205:6lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.2.3Individual
lightgbm.Dataset, lightgbm.train, lightgbm.LGBMClassifier,time variant better,[lightgbm]1205:7lightgbm:2.1.2Individual
sklearn.linear_model.LogisticRegression, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]1210:2, 1224:2, 17694:2scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]1210:6, 1224:6, 17694:8scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]1210:8, 1224:8, 17694:1scikit-learn:0.19.2, scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix, sklearn.model_selection.StratifiedShuffleSplit, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]1214:2scikit-learn:0.24.2Individual
sklearn.linear_model.LogisticRegression,memory baseline better,[scikit-learn]1233:6, 19606:2, 19606:3, 19606:6scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]1255:2, 1255:3, 1255:4, 1255:5, 8473:6scikit-learn:1.0.1Individual
lightgbm.LGBMClassifier,time baseline better,memory variant better,score inconsistent[lightgbm]1255:2, 1255:3, 1255:4, 1255:5, 8226:2, 8226:7, 17649:5, 24531:1, 24531:2, 24531:3, 24531:4, 24531:5, 24677:5, 25003:5, 25011:5, 25134:3, 25134:5lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.1.2, lightgbm:3.3.1Individual
sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]1255:6, 1255:7scikit-learn:1.0.1Individual
lightgbm.LGBMClassifier,time baseline better,memory baseline better,score inconsistent[lightgbm]1255:6, 1255:7, 8479:2, 8479:5, 17649:6, 24514:7, 24601:1, 24601:3, 24601:4, 24601:5, 24601:6, 24677:6, 24677:7, 24980:3, 25011:6, 25038:2, 25038:5lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.2.1, lightgbm:2.3.1, lightgbm:3.3.1, lightgbm:3.1.1, lightgbm:3.0.0Individual
xgboost.XGBClassifier,time variant better,memory variant better,score inconsistent[xgboost]1385:7, 17718:1, 17718:2, 17718:3, 20683:5, 20683:7, 24528:1, 24533:1, 24533:2, 24533:3, 24563:4, 24563:5, 24563:6, 24563:7, 24588:3, 24588:5, 24588:6, 24588:7, 25136:7xgboost:0.90, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.2.1, xgboost:1.0.2Individual
catboost.CatBoostClassifier,time variant better,memory variant better,[catboost]1413:1, 1413:2, 1413:3, 1413:4, 1413:5catboost:1.0.3, catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23Individual
catboost.CatBoostClassifier,time variant better,memory variant better,score inconsistent[catboost]1413:6, 1413:7, 1413:11, 24959:3catboost:0.20.2, catboost:0.17.5, catboost:0.10.3, catboost:0.24.4Individual
catboost.CatBoostClassifier,memory variant better,score inconsistent[catboost]1413:8, 20177:7, 24959:4, 24959:5catboost:0.16.5, catboost:0.17.5, catboost:0.23.2, catboost:0.23Individual
sklearn.preprocessing.MinMaxScaler,score inconsistent[scikit-learn]1475:1, 1475:4, 1475:5, 1475:8, 1512:1, 1512:2, 1512:3, 1512:6, 1512:7, 1568:3, 1568:5, 1568:7scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3Individual
lightgbm.Dataset, lightgbm.train,memory variant better,score inconsistent[lightgbm]1510:5, 1511:5, 24970:1, 24970:2, 24970:5, 24970:6lightgbm:2.3.1, lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:2.2.3Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time baseline better,[tensorflow]1512:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time baseline better,memory variant better,score inconsistent[tensorflow]1512:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time baseline better,memory variant better,[tensorflow]1512:7tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.AveragePooling1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.keras.Model,time baseline better,memory variant better,score inconsistent[tensorflow]1524:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.backend.sqrt, tensorflow.compat.v1.keras.layers.CuDNNLSTM, tensorflow.keras.backend.mean, tensorflow.keras.models.Sequential, tensorflow.keras.backend.square,score inconsistent[tensorflow]1526:2, 1663:2tensorflow:2.4.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.MinMaxScaler,score inconsistent[scikit-learn]1526:4, 1663:3, 1663:6scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.backend.sqrt, tensorflow.compat.v1.keras.layers.CuDNNLSTM, tensorflow.keras.backend.mean, tensorflow.keras.models.Sequential, tensorflow.keras.backend.square,time baseline better,memory variant better,[tensorflow]1526:4, 1663:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.backend.sqrt, tensorflow.compat.v1.keras.layers.CuDNNLSTM, tensorflow.keras.backend.mean, tensorflow.keras.models.Sequential, tensorflow.keras.backend.square,time baseline better,[tensorflow]1526:5, 1663:5tensorflow:2.1.0Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.MinMaxScaler,memory baseline better,[scikit-learn]1526:8, 1663:8scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler,time variant better,score inconsistent[scikit-learn]1549:1, 1549:6, 1660:1scikit-learn:1.0.1, scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler,time variant better,memory baseline better,score inconsistent[scikit-learn]1549:2, 1549:3, 1576:3, 1660:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler,time variant better,memory variant better,score inconsistent[scikit-learn]1549:4, 1549:5, 1549:7, 1549:8, 1576:8, 1660:4, 1660:6, 1660:7, 1660:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler,time baseline better,memory variant better,score inconsistent[scikit-learn]1576:1, 1576:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.preprocessing.StandardScaler,time baseline better,memory baseline better,score inconsistent[scikit-learn]1576:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler,memory variant better,score inconsistent[scikit-learn]1576:4, 1576:5, 1660:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.preprocessing.StandardScaler,score inconsistent[scikit-learn]1576:6, 25406:8scikit-learn:0.21.3, scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.regularizers.l2, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,score inconsistent[tensorflow]1625:2, 1625:4tensorflow:2.4.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.regularizers.l2, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,time variant better,score inconsistent[tensorflow]1625:5tensorflow:2.1.0Individual
sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]1650:2, 1650:3, 3375:5, 3375:6, 3375:7, 17193:8, 25326:2scikit-learn:1.0.1Individual
sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]1650:5, 17193:4scikit-learn:1.0.1Individual
sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]1650:6, 3375:3, 17193:5, 25326:6scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.random.set_seed, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,time variant better,[tensorflow]1652:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.random.set_seed, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,memory variant better,[tensorflow]1652:3, 1652:4tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.random.set_seed, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,time variant better,memory variant better,score inconsistent[tensorflow]1652:5tensorflow:2.1.0Individual
sklearn.preprocessing.StandardScaler,memory baseline better,score inconsistent[scikit-learn]1660:2, 25406:2, 25406:3, 25406:4, 25406:5, 25406:6, 25406:7scikit-learn:0.24.2, scikit-learn:1.0.1Individual
lightgbm.Dataset, lightgbm.train,time baseline better,[lightgbm]1692:4, 8665:5, 16469:5, 19541:3, 20070:2, 24018:3, 24062:3, 24452:4, 25141:2, 25141:3, 25141:5, 31771:4lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:3.1.1, lightgbm:3.2.1Individual
lightgbm.Dataset, lightgbm.train,score inconsistent[lightgbm]1692:7, 10587:4, 16469:3, 16744:3, 16744:4, 16744:5, 16744:6, 16744:7, 19597:5, 25141:7, 31775:5lightgbm:2.1.2, lightgbm:3.0.0, lightgbm:3.1.1, lightgbm:2.3.1, lightgbm:2.2.3Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,memory variant better,[tensorflow]1708:2, 1708:4tensorflow:2.4.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,time variant better,memory variant better,[tensorflow]1708:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.concatenate, tensorflow.keras.backend.clear_session,time baseline better,memory variant better,score inconsistent[tensorflow]1708:5, 1708:7, 1708:8tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential,time baseline better,[tensorflow]3095:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential,score inconsistent[tensorflow]3095:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential,memory baseline better,[tensorflow]3095:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential,time baseline better,score inconsistent[tensorflow]3095:7tensorflow:1.15.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,time variant better,memory variant better,[tensorflow]3096:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,time variant better,[tensorflow]3096:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,memory baseline better,[tensorflow]3096:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,score inconsistent[tensorflow]3096:7tensorflow:2.0.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.log_loss, sklearn.model_selection.KFold, sklearn.linear_model.LogisticRegression, sklearn.feature_selection.VarianceThreshold,time baseline better,[scikit-learn]3099:6, 3099:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.log_loss, sklearn.model_selection.KFold, sklearn.linear_model.LogisticRegression, sklearn.feature_selection.VarianceThreshold,memory variant better,[scikit-learn]3099:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,time variant better,[tensorflow]3100:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,time baseline better,[tensorflow]3100:2, 3100:3, 3100:4, 3101:4tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,score inconsistent[tensorflow]3100:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,time baseline better,score inconsistent[tensorflow]3100:6tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,time variant better,memory variant better,[tensorflow]3100:7tensorflow:1.15.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,memory variant better,[tensorflow]3100:8, 3101:8tensorflow:1.14.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,memory variant better,score inconsistent[tensorflow]3100:9, 3101:6, 3101:9tensorflow:1.13.1, tensorflow:1.15.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.LeakyReLU,time variant better,score inconsistent[tensorflow]3101:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,time variant better,memory baseline better,score inconsistent[tensorflow]3104:1, 3104:2, 3104:5tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.1.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold,time variant better,memory baseline better,score inconsistent[scikit-learn]3104:2, 3104:3, 3104:4, 3104:5, 3104:6, 3104:7, 3104:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,time variant better,memory variant better,score inconsistent[tensorflow]3104:3, 3104:4, 3104:7tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.0.0Individual
sklearn.decomposition.PCA, sklearn.linear_model.LinearRegression,time baseline better,[scikit-learn]3118:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]3118:7, 3119:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.linear_model.LinearRegression,memory variant better,[scikit-learn]3118:8, 8696:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.linear_model.LinearRegression,time baseline better,memory variant better,[scikit-learn]3119:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.utils.shuffle,time baseline better,memory baseline better,[scikit-learn]3148:2, 3148:5scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.utils.shuffle,time baseline better,memory baseline better,score inconsistent[scikit-learn]3148:3, 3148:4, 3148:6, 3148:7scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.device,time variant better,[tensorflow]3171:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.device,time variant better,memory variant better,[tensorflow]3171:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.device,score inconsistent[tensorflow]3171:3, 3171:4, 3171:5tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.device,memory variant better,score inconsistent[tensorflow]3171:7, 3171:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.device,time baseline better,memory variant better,score inconsistent[tensorflow]3171:9tensorflow:1.13.1Individual
tensorflow.feature_column.numeric_column, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.stack, tensorflow.feature_column.indicator_column, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.DenseFeatures, tensorflow.feature_column.categorical_column_with_vocabulary_list, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.data.experimental.CsvDataset, tensorflow.data.Dataset.zip,score inconsistent[tensorflow]3176:4tensorflow:2.2.0Individual
tensorflow.feature_column.numeric_column, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.stack, tensorflow.feature_column.indicator_column, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.DenseFeatures, tensorflow.feature_column.categorical_column_with_vocabulary_list, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.data.experimental.CsvDataset, tensorflow.data.Dataset.zip,memory baseline better,[tensorflow]3176:5tensorflow:2.1.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,score inconsistent[tensorflow]3189:2, 3189:6tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,score inconsistent[tensorflow]3189:3, 3189:4, 3189:5, 3189:7, 3189:8, 3189:9tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,memory variant better,score inconsistent[tensorflow]3189:10, 3189:13, 3189:14, 3189:18tensorflow:2.4.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,memory variant better,score inconsistent[tensorflow]3189:11, 3189:15tensorflow:2.4.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,time variant better,memory variant better,score inconsistent[tensorflow]3189:12, 3189:16, 3189:17tensorflow:2.4.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,time variant better,memory baseline better,score inconsistent[tensorflow]3189:19, 3189:20, 3189:25, 3189:26, 3189:27tensorflow:2.3.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.optimizers.SGD, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy,memory baseline better,score inconsistent[tensorflow]3189:21, 3189:22, 3189:23, 3189:24tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Activation, tensorflow.keras.Sequential, tensorflow.config.list_physical_devices, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping,time baseline better,memory variant better,score inconsistent[tensorflow]3219:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,[tensorflow]3222:1, 3222:7tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,memory variant better,score inconsistent[tensorflow]3222:2, 3222:4, 3222:8tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,score inconsistent[tensorflow]3222:3, 3222:5, 3222:6, 3222:9, 3222:17, 3222:18, 3222:22tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,score inconsistent[tensorflow]3222:10, 3222:11, 3222:23tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,memory baseline better,score inconsistent[tensorflow]3222:12, 3222:15, 3222:16, 3222:24tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,memory baseline better,score inconsistent[tensorflow]3222:13, 3222:14, 3222:19, 3222:20, 3222:21, 3222:27tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.metrics.Accuracy, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,memory baseline better,[tensorflow]3222:25, 3222:26tensorflow:2.3.1Individual
xgboost.XGBClassifier,time variant better,score inconsistent[xgboost]3223:1, 3223:2, 3223:3, 3223:5, 3223:6, 3452:4, 3486:2, 24528:2, 24528:3xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,memory variant better,[tensorflow]3230:1, 3230:2, 3230:4, 3230:5, 3230:6, 3230:9tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,time variant better,memory variant better,score inconsistent[tensorflow]3230:3tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,memory variant better,score inconsistent[tensorflow]3230:7, 3230:8tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,time variant better,memory baseline better,score inconsistent[tensorflow]3230:10, 3230:13, 3230:14, 3230:15, 3230:17, 3230:18tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,time variant better,memory baseline better,[tensorflow]3230:11, 3230:12, 3230:16tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,time baseline better,[tensorflow]3230:19, 3230:23, 3230:24tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.Model,time baseline better,score inconsistent[tensorflow]3230:20, 3230:21, 3230:22, 3230:25, 3230:26, 3230:27tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.backend.log, tensorflow.keras.losses.Huber, tensorflow.keras.layers.Activation, tensorflow.keras.backend.mean, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.clip_by_value,score inconsistent[tensorflow]3236:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.backend.log, tensorflow.keras.losses.Huber, tensorflow.keras.layers.Activation, tensorflow.keras.backend.mean, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.plot_model, tensorflow.keras.layers.concatenate, tensorflow.clip_by_value,time baseline better,memory variant better,[tensorflow]3236:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,time variant better,memory variant better,[tensorflow]3267:2, 3267:3, 3267:4, 3267:5, 3267:7, 3267:8tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,time variant better,memory variant better,score inconsistent[tensorflow]3267:6tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,memory variant better,[tensorflow]3267:9tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,time variant better,memory baseline better,score inconsistent[tensorflow]3267:10, 3267:15tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,time variant better,memory baseline better,[tensorflow]3267:11, 3267:14, 3267:16, 3267:17, 3267:18tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,memory baseline better,[tensorflow]3267:12tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,memory baseline better,score inconsistent[tensorflow]3267:13tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,time baseline better,memory baseline better,[tensorflow]3267:19, 3267:21, 3267:23, 3267:26, 3267:27tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.random.set_seed, tensorflow.optimizers.Adam,time baseline better,memory baseline better,score inconsistent[tensorflow]3267:20, 3267:22, 3267:24, 3267:25tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,score inconsistent[tensorflow]3279:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,memory baseline better,[tensorflow]3279:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,time baseline better,[tensorflow]3279:7tensorflow:2.0.0Individual
sklearn.metrics.log_loss, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,memory variant better,score inconsistent[scikit-learn]3286:1, 3286:2, 3286:3scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3Individual
sklearn.metrics.log_loss, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,memory baseline better,score inconsistent[scikit-learn]3286:6, 3286:7scikit-learn:0.24.2, scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]3307:2scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]3307:4scikit-learn:1.0.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.MaxPool1D, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.metrics.AUC, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,score inconsistent[tensorflow]3308:1tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.MaxPool1D, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.metrics.AUC, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,time variant better,memory variant better,[tensorflow]3308:2tensorflow:2.4.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.MaxPool1D, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.metrics.AUC, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,memory variant better,score inconsistent[tensorflow]3308:3tensorflow:2.3.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.MaxPool1D, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.metrics.AUC, tensorflow.keras.layers.Dropout, tensorflow.keras.models.load_model, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.random.set_seed,time baseline better,memory variant better,score inconsistent[tensorflow]3308:4tensorflow:2.2.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.preprocessing.QuantileTransformer, sklearn.feature_selection.VarianceThreshold,memory baseline better,score inconsistent[scikit-learn]3319:2, 3319:3scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.preprocessing.QuantileTransformer, sklearn.feature_selection.VarianceThreshold,score inconsistent[scikit-learn]3319:5scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.initializers.TruncatedNormal, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.concatenate, tensorflow.keras.Model,memory variant better,score inconsistent[tensorflow]3347:1tensorflow:2.7.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold,memory variant better,score inconsistent[scikit-learn]3347:2, 3347:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.initializers.TruncatedNormal, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.concatenate, tensorflow.keras.Model,time variant better,memory variant better,score inconsistent[tensorflow]3347:2tensorflow:2.4.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold,time baseline better,memory variant better,[scikit-learn]3347:3, 3347:4scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.initializers.TruncatedNormal, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.concatenate, tensorflow.keras.Model,memory baseline better,[tensorflow]3347:4tensorflow:2.2.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold,time baseline better,memory variant better,score inconsistent[scikit-learn]3347:5, 3347:6, 3347:7scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.initializers.TruncatedNormal, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.layers.concatenate, tensorflow.keras.Model,score inconsistent[tensorflow]3347:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,memory baseline better,[tensorflow]3350:1, 25791:1tensorflow:2.7.0Individual
sklearn.model_selection.KFold, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]3350:2, 3350:4, 3350:5, 3350:6scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,time baseline better,[tensorflow]3350:2, 3350:3tensorflow:2.4.1, tensorflow:2.3.1Individual
sklearn.model_selection.KFold, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]3350:3, 3350:7scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,time baseline better,memory variant better,[tensorflow]3350:4, 25791:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,memory variant better,score inconsistent[tensorflow]3350:5, 3350:6, 3350:8, 25791:7tensorflow:2.1.0, tensorflow:2.0.0, tensorflow:1.14.0, tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,time baseline better,memory variant better,score inconsistent[tensorflow]3350:7, 3350:9tensorflow:1.15.2, tensorflow:1.13.1Individual
sklearn.linear_model.ElasticNet, sklearn.metrics.log_loss, sklearn.model_selection.GroupKFold,memory variant better,[scikit-learn]3352:1, 3352:4, 3352:5, 3352:6scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Individual
sklearn.linear_model.ElasticNet, sklearn.metrics.log_loss, sklearn.model_selection.GroupKFold,time variant better,memory variant better,[scikit-learn]3352:7, 3352:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.convert_to_tensor, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,time variant better,memory baseline better,score inconsistent[tensorflow]3358:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.convert_to_tensor, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,time baseline better,score inconsistent[tensorflow]3358:2, 3358:3, 3358:4tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
xgboost.XGBClassifier,time variant better,memory baseline better,[xgboost]3363:1, 24511:4, 24511:5, 24511:6, 24572:5xgboost:1.5.1, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Individual
xgboost.XGBClassifier,time variant better,memory baseline better,score inconsistent[xgboost]3363:2, 3363:3, 3363:4, 3363:5, 3486:3, 17718:4, 17718:5, 17718:6, 20683:1, 20683:2, 20694:1, 20694:2, 20694:3, 20694:4, 20694:5, 20694:6, 20694:7, 24528:4, 24528:5, 24528:6, 24533:4, 24533:5, 24533:6, 24563:1, 24563:2, 25132:4, 25132:6xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:0.90Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time variant better,[tensorflow]3367:5tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,score inconsistent[tensorflow]3367:8tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time baseline better,[tensorflow]3367:9tensorflow:2.0.0Individual
sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]3375:4, 25326:3scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder,time baseline better,[scikit-learn]3382:4scikit-learn:0.22.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder,memory baseline better,[scikit-learn]3382:6scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder,time variant better,memory baseline better,[scikit-learn]3382:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.model_selection.KFold, sklearn.preprocessing.OneHotEncoder,memory baseline better,[scikit-learn]3387:2, 3387:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.drop,time baseline better,[tensorflow]3405:2, 3405:3, 3405:7, 3405:8tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.drop,time baseline better,score inconsistent[tensorflow]3405:4, 3405:5, 3405:6, 3405:9tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.drop,time variant better,[tensorflow]3405:10, 3405:15tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.drop,time variant better,score inconsistent[tensorflow]3405:11, 3405:16tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.drop,time variant better,memory variant better,[tensorflow]3405:12, 3405:13, 3405:14tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.drop,time variant better,memory baseline better,[tensorflow]3405:17, 3405:18tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time baseline better,memory baseline better,score inconsistent[tensorflow]3439:1, 3439:2, 3439:3, 3439:4, 3439:5tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time baseline better,memory variant better,score inconsistent[tensorflow]3439:6, 3439:7, 3439:8, 3439:9, 16701:9tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.14.0, tensorflow:1.13.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.backend.clear_session,memory baseline better,score inconsistent[tensorflow]3440:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.models.Model, tensorflow.random.set_seed, tensorflow.keras.losses.BinaryCrossentropy, tensorflow.keras.backend.clear_session,memory variant better,score inconsistent[tensorflow]3440:2, 3440:3, 3440:4tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,memory variant better,[tensorflow]3446:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,memory baseline better,[tensorflow]3446:4, 3446:5tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,memory variant better,score inconsistent[tensorflow]3446:7tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,memory variant better,[tensorflow]3447:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,time baseline better,[tensorflow]3447:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,time baseline better,memory baseline better,score inconsistent[tensorflow]3447:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,memory variant better,score inconsistent[tensorflow]3464:1, 3464:2, 3464:6, 3464:8tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time variant better,memory variant better,score inconsistent[tensorflow]3464:3tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time variant better,memory variant better,[tensorflow]3464:4, 3464:7tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,memory variant better,[tensorflow]3464:5, 3464:9tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time variant better,memory baseline better,[tensorflow]3464:10, 3464:14, 3464:15tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time variant better,memory baseline better,score inconsistent[tensorflow]3464:11, 3464:12, 3464:13, 3464:16, 3464:17, 3464:18tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time baseline better,memory baseline better,score inconsistent[tensorflow]3464:19, 3464:20, 3464:25, 3464:26, 3464:27tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential,time baseline better,memory baseline better,[tensorflow]3464:21, 3464:22, 3464:23, 3464:24tensorflow:2.3.1Individual
xgboost.XGBRegressor,time baseline better,score inconsistent[xgboost]3467:7, 20405:5, 24008:7, 24092:7, 24097:7, 24112:7, 24371:7, 25812:7xgboost:0.90, xgboost:1.1.1Individual
sklearn.preprocessing.OneHotEncoder,score inconsistent[scikit-learn]3474:1scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder,memory baseline better,[scikit-learn]3474:2scikit-learn:0.24.2Individual
sklearn.preprocessing.OneHotEncoder,memory baseline better,score inconsistent[scikit-learn]3474:3scikit-learn:0.23.2Individual
sklearn.preprocessing.OneHotEncoder,time variant better,score inconsistent[scikit-learn]3474:4, 3474:5, 3474:6, 3474:7scikit-learn:0.24.2, scikit-learn:0.23.2Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time variant better,memory variant better,[tensorflow]3481:2, 3481:3, 3481:9tensorflow:2.7.0Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,memory variant better,score inconsistent[tensorflow]3481:4, 3481:6tensorflow:2.7.0Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,memory variant better,[tensorflow]3481:7tensorflow:2.7.0Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time baseline better,memory variant better,score inconsistent[tensorflow]3481:8tensorflow:2.7.0Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time baseline better,score inconsistent[tensorflow]3481:10, 3481:15tensorflow:2.4.1Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time variant better,[tensorflow]3481:14, 3481:18tensorflow:2.4.1Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,score inconsistent[tensorflow]3481:16tensorflow:2.4.1Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,memory baseline better,score inconsistent[tensorflow]3481:19, 3481:23, 3481:26tensorflow:2.3.1Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time baseline better,memory baseline better,score inconsistent[tensorflow]3481:20, 3481:21, 3481:22tensorflow:2.3.1Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time variant better,memory baseline better,[tensorflow]3481:24, 3481:27tensorflow:2.3.1Individual
tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.optimizers.Adam, tensorflow.keras.layers.Conv2D,time baseline better,memory baseline better,[tensorflow]3481:25tensorflow:2.3.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.MinMaxScaler, sklearn.metrics.log_loss, sklearn.neural_network.MLPClassifier, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]3485:6scikit-learn:0.21.3Individual
xgboost.XGBClassifier,time variant better,memory variant better,[xgboost]3486:1, 17621:3, 24511:1, 24511:2, 24511:3, 24588:4, 24969:5, 24969:6xgboost:1.5.1, xgboost:1.3.3, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Individual
xgboost.XGBClassifier,memory baseline better,score inconsistent[xgboost]3486:5, 17638:7, 17676:4, 17676:5, 17676:6, 20041:6, 24511:7, 24894:2, 25132:1, 25132:3xgboost:1.1.1, xgboost:0.90, xgboost:1.2.1, xgboost:1.0.2, xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.Model,memory variant better,[tensorflow]3505:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.Model,time baseline better,memory variant better,[tensorflow]3505:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.Model,time baseline better,score inconsistent[tensorflow]3505:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.Model,time variant better,score inconsistent[tensorflow]3508:1tensorflow:2.7.0Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]3508:2scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]3508:3scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]3508:5, 3508:7scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]3508:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,score inconsistent[tensorflow]3517:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,time variant better,score inconsistent[tensorflow]3517:2, 3517:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,time variant better,memory baseline better,score inconsistent[tensorflow]3517:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,time variant better,memory variant better,score inconsistent[tensorflow]3517:5, 3517:6, 3517:7, 3517:8tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.14.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,memory variant better,score inconsistent[tensorflow]3517:9tensorflow:1.13.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,score inconsistent[tensorflow]3527:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,memory baseline better,[tensorflow]3527:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,time baseline better,[tensorflow]3527:7tensorflow:2.0.0Individual
sklearn.ensemble.RandomForestClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]8189:5scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]8189:7scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.preprocessing.RobustScaler,memory variant better,score inconsistent[scikit-learn]8226:2, 8226:3, 8226:4, 8226:5, 8226:6, 8226:7scikit-learn:1.0.1Individual
sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,score inconsistent[scikit-learn]8473:2, 8473:7scikit-learn:1.0.1Individual
lightgbm.Dataset, lightgbm.train,time variant better,memory variant better,[lightgbm]8473:2, 8473:5, 17654:7, 17744:2, 17744:3, 17744:4, 17744:6lightgbm:3.2.1, lightgbm:2.3.1, lightgbm:2.1.2, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.2.3Individual
sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]8473:3, 8473:4, 8473:5scikit-learn:1.0.1Individual
lightgbm.Dataset, lightgbm.train,memory variant better,[lightgbm]8473:4, 17744:5, 20070:6, 20070:7, 24324:4, 24970:7, 31775:7, 31897:6, 31897:7, 31905:6lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.2.3, lightgbm:2.1.2Individual
lightgbm.Dataset, lightgbm.train,time baseline better,memory baseline better,score inconsistent[lightgbm]8473:6lightgbm:2.2.3Individual
lightgbm.LGBMClassifier,time variant better,memory baseline better,score inconsistent[lightgbm]8479:1, 8479:3, 8479:6, 8479:7, 24571:6, 24571:7, 24601:2, 24980:2, 24980:4, 24980:6, 24980:7lightgbm:3.3.1, lightgbm:3.1.1, lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.2.1, lightgbm:3.0.0Individual
lightgbm.LGBMClassifier,memory baseline better,score inconsistent[lightgbm]8479:4, 17649:7, 24601:7, 24980:1, 24980:5, 25038:1, 25038:3, 25038:4, 25038:6, 25038:7, 25121:6lightgbm:3.0.0, lightgbm:2.1.2, lightgbm:3.3.1, lightgbm:2.3.1, lightgbm:3.1.1, lightgbm:2.2.3Individual
sklearn.ensemble.RandomForestRegressor,memory baseline better,[scikit-learn]8500:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestRegressor,time baseline better,memory baseline better,[scikit-learn]8500:3scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestRegressor,time variant better,score inconsistent[scikit-learn]8500:6scikit-learn:0.21.3Individual
sklearn.ensemble.RandomForestRegressor,time variant better,[scikit-learn]8500:7scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestRegressor,memory variant better,[scikit-learn]8500:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,time variant better,[tensorflow]8561:2, 8561:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,memory baseline better,[tensorflow]8561:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,time baseline better,memory baseline better,score inconsistent[tensorflow]8561:7tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.test.gpu_device_name, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,time variant better,memory variant better,[tensorflow]8563:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.test.gpu_device_name, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,time variant better,[tensorflow]8563:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.test.gpu_device_name, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,memory variant better,[tensorflow]8563:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.test.gpu_device_name, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,memory baseline better,score inconsistent[tensorflow]8563:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Add, tensorflow.keras.optimizers.Adam, tensorflow.test.gpu_device_name, tensorflow.keras.Input, tensorflow.keras.layers.Dropout, tensorflow.random.set_seed, tensorflow.keras.Model,score inconsistent[tensorflow]8563:7tensorflow:2.0.0Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]8658:1, 8658:4, 8658:5scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]8658:2, 8658:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]8658:5scikit-learn:0.22Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory baseline better,score inconsistent[scikit-learn]8658:6scikit-learn:0.21.3Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]8658:6scikit-learn:0.21.3Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time variant better,memory baseline better,[scikit-learn]8658:7, 8658:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]8658:7scikit-learn:0.20.3Individual
sklearn.metrics.log_loss, sklearn.linear_model.Lasso, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,[scikit-learn]8658:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.linear_model.LinearRegression,time variant better,[scikit-learn]8696:6scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.linear_model.LinearRegression,time baseline better,memory baseline better,[scikit-learn]8696:7scikit-learn:0.20.3Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,[scikit-learn]10471:2, 10471:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,[scikit-learn]10471:4, 10471:6scikit-learn:0.22.1, scikit-learn:0.21.3Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,memory variant better,[scikit-learn]10471:5scikit-learn:0.22Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer,score inconsistent[scikit-learn]10471:7, 10471:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
xgboost.XGBRegressor,time baseline better,memory baseline better,score inconsistent[xgboost]10476:2, 10585:2, 17698:7, 24325:7, 24411:7xgboost:1.4.2, xgboost:0.90Individual
xgboost.XGBRegressor,score inconsistent[xgboost]10476:5, 10802:1, 10802:2, 10802:3, 10802:4, 10802:5, 10802:6, 10802:7, 20409:7, 23921:7, 23928:6, 23932:3, 24017:5, 24150:6, 24155:7, 24354:4, 24432:7, 24905:7, 25012:4, 25012:5, 25812:3, 25854:4xgboost:1.1.1, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90Individual
xgboost.XGBRegressor,time baseline better,memory baseline better,[xgboost]10511:1, 23928:2, 24425:5, 24425:6, 24905:2xgboost:1.5.1, xgboost:1.4.2, xgboost:1.1.1, xgboost:1.0.2Individual
xgboost.XGBRegressor,memory baseline better,[xgboost]10511:2, 10767:1, 10767:2, 10850:2, 17665:2, 17698:4, 17698:5, 17698:6, 20405:2, 20409:2, 24017:2, 24092:2, 24309:4, 24309:6, 24309:7, 24325:5, 24325:6, 24411:4, 24425:4, 24432:2, 25806:1, 22249:2xgboost:1.4.2, xgboost:1.5.1, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Individual
xgboost.XGBRegressor,time baseline better,[xgboost]10511:7, 20409:5, 23921:4, 23932:5, 24155:2, 24309:1, 24309:2, 24432:4, 25012:2, 25854:7xgboost:0.90, xgboost:1.1.1, xgboost:1.2.1, xgboost:1.4.2, xgboost:1.5.1Individual
xgboost.XGBRegressor,time variant better,memory variant better,score inconsistent[xgboost]10513:1, 10585:5, 17665:7, 24443:1xgboost:1.5.1, xgboost:1.1.1, xgboost:0.90Individual
xgboost.XGBRegressor,time variant better,memory baseline better,score inconsistent[xgboost]10513:4, 10513:5, 10513:6, 10585:1, 24443:5, 24443:6, 25812:1xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1Individual
lightgbm.LGBMRegressor,time baseline better,memory baseline better,[lightgbm]10522:1, 11456:6lightgbm:3.3.1, lightgbm:2.2.3Individual
lightgbm.LGBMRegressor,time baseline better,[lightgbm]10522:3, 11428:3, 23933:4, 23933:5, 23935:4, 24035:5, 24336:2lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:3.2.1Individual
lightgbm.LGBMRegressor,memory variant better,[lightgbm]10522:6, 10522:7, 11428:6lightgbm:2.2.3, lightgbm:2.1.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]10541:2scikit-learn:0.24.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]10541:8scikit-learn:0.19.2Individual
sklearn.linear_model.Ridge, sklearn.linear_model.ElasticNet, sklearn.linear_model.SGDRegressor, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.Lasso,time variant better,[scikit-learn]10546:3scikit-learn:0.23.2Individual
sklearn.linear_model.Ridge, sklearn.linear_model.ElasticNet, sklearn.linear_model.SGDRegressor, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.Lasso,time baseline better,[scikit-learn]10546:4scikit-learn:0.22.1Individual
sklearn.linear_model.Ridge, sklearn.linear_model.ElasticNet, sklearn.linear_model.SGDRegressor, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.Lasso,score inconsistent[scikit-learn]10546:6scikit-learn:0.21.3Individual
sklearn.linear_model.Ridge, sklearn.linear_model.ElasticNet, sklearn.linear_model.SGDRegressor, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.Lasso,memory baseline better,score inconsistent[scikit-learn]10546:7scikit-learn:0.20.3Individual
sklearn.linear_model.Ridge, sklearn.linear_model.ElasticNet, sklearn.linear_model.SGDRegressor, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.Lasso,time variant better,score inconsistent[scikit-learn]10546:8scikit-learn:0.19.2Individual
xgboost.XGBRegressor,time baseline better,memory variant better,score inconsistent[xgboost]10585:3xgboost:1.3.3Individual
xgboost.XGBRegressor,memory variant better,score inconsistent[xgboost]10585:4, 10585:7, 10767:7, 23928:1, 25806:7, 25854:6xgboost:1.2.1, xgboost:0.90, xgboost:1.5.1, xgboost:1.0.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,memory baseline better,[scikit-learn]10593:2scikit-learn:0.24.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,time baseline better,memory baseline better,[scikit-learn]10593:3scikit-learn:0.23.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,time baseline better,[scikit-learn]10593:6scikit-learn:0.21.3Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,time variant better,score inconsistent[scikit-learn]10593:7scikit-learn:0.20.3Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,memory variant better,score inconsistent[scikit-learn]10593:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Bidirectional, tensorflow.keras.models.tensorflow.keras.modelsodel, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.preprocessing.text.Tokenizer,time baseline better,score inconsistent[tensorflow]10627:7, 10627:8tensorflow:1.15.2, tensorflow:1.14.0Individual
sklearn.linear_model.BayesianRidge, sklearn.svm.SVR, sklearn.linear_model.PassiveAggressiveRegressor, sklearn.linear_model.SGDRegressor, sklearn.linear_model.TheilSenRegressor, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.ARDRegression, sklearn.linear_model.LassoLars,time variant better,[scikit-learn]10655:2scikit-learn:0.24.2Individual
sklearn.linear_model.BayesianRidge, sklearn.svm.SVR, sklearn.linear_model.PassiveAggressiveRegressor, sklearn.linear_model.SGDRegressor, sklearn.linear_model.TheilSenRegressor, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.ARDRegression, sklearn.linear_model.LassoLars,memory baseline better,[scikit-learn]10655:4, 10655:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.linear_model.BayesianRidge, sklearn.svm.SVR, sklearn.linear_model.PassiveAggressiveRegressor, sklearn.linear_model.SGDRegressor, sklearn.linear_model.TheilSenRegressor, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.ARDRegression, sklearn.linear_model.LassoLars,memory baseline better,score inconsistent[scikit-learn]10655:6scikit-learn:0.21.3Individual
sklearn.linear_model.BayesianRidge, sklearn.svm.SVR, sklearn.linear_model.PassiveAggressiveRegressor, sklearn.linear_model.SGDRegressor, sklearn.linear_model.TheilSenRegressor, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.ARDRegression, sklearn.linear_model.LassoLars,score inconsistent[scikit-learn]10655:7scikit-learn:0.20.3Individual
sklearn.linear_model.BayesianRidge, sklearn.svm.SVR, sklearn.linear_model.PassiveAggressiveRegressor, sklearn.linear_model.SGDRegressor, sklearn.linear_model.TheilSenRegressor, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.ARDRegression, sklearn.linear_model.LassoLars,time baseline better,score inconsistent[scikit-learn]10655:8scikit-learn:0.19.2Individual
xgboost.sklearn.XGBRegressor,score inconsistent[xgboost]10658:2, 10658:5, 10658:6, 10660:1xgboost:1.4.2, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1Individual
xgboost.sklearn.XGBRegressor,memory baseline better,score inconsistent[xgboost]10658:3, 10658:4xgboost:1.3.3, xgboost:1.2.1Individual
xgboost.sklearn.XGBRegressor,time baseline better,score inconsistent[xgboost]10658:7, 23995:7xgboost:0.90Individual
sklearn.metrics.mean_absolute_error, sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,score inconsistent[scikit-learn]10732:7scikit-learn:0.20.3Individual
sklearn.metrics.mean_absolute_error, sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,score inconsistent[scikit-learn]10732:8scikit-learn:0.19.2Individual
xgboost.XGBRegressor, xgboost.fit, xgboost.predict,time variant better,memory baseline better,score inconsistent[xgboost]10758:1, 10758:2xgboost:1.5.1, xgboost:1.4.2Individual
xgboost.XGBRegressor, xgboost.fit, xgboost.predict,time variant better,score inconsistent[xgboost]10758:3xgboost:1.3.3Individual
xgboost.XGBRegressor, xgboost.fit, xgboost.predict,time variant better,memory variant better,score inconsistent[xgboost]10758:4, 10758:5, 10758:6, 10758:7xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Individual
xgboost.XGBRFRegressor, xgboost.XGBRegressor,score inconsistent[xgboost]10761:1, 10761:2xgboost:1.5.1, xgboost:1.4.2Individual
xgboost.XGBRFRegressor, xgboost.XGBRegressor,memory baseline better,score inconsistent[xgboost]10761:3, 10761:4, 10761:5, 10761:6, 10761:7xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Individual
xgboost.XGBRegressor,memory variant better,[xgboost]10767:3, 10767:4, 10767:5, 10767:6, 24008:3, 24092:1, 24096:3, 24112:3, 24155:3, 24325:1, 24325:2, 24325:3, 24371:3, 24411:1, 24425:3xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.GlobalAveragePooling1D,time baseline better,[tensorflow]10775:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.GlobalAveragePooling1D,time baseline better,score inconsistent[tensorflow]10775:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.GlobalAveragePooling1D,memory variant better,score inconsistent[tensorflow]10775:4, 10775:7, 10775:8tensorflow:2.2.0, tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.GlobalAveragePooling1D,time baseline better,memory variant better,[tensorflow]10775:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.GlobalAveragePooling1D,time baseline better,memory variant better,score inconsistent[tensorflow]10775:9tensorflow:1.13.1Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.mean_squared_error, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]10806:2, 10806:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.mean_squared_error, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]10806:6, 10806:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.mean_squared_error, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split,memory variant better,score inconsistent[scikit-learn]10806:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.mean_absolute_error, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,memory baseline better,[scikit-learn]10820:2, 10820:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.mean_absolute_error, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,score inconsistent[scikit-learn]10820:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.mean_absolute_error, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,time variant better,score inconsistent[scikit-learn]10820:7scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.mean_absolute_error, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,memory variant better,score inconsistent[scikit-learn]10820:8scikit-learn:0.19.2Individual
sklearn.linear_model.Ridge, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error,time baseline better,[scikit-learn]10828:6scikit-learn:0.21.3Individual
sklearn.linear_model.Ridge, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error,memory baseline better,[scikit-learn]10828:7scikit-learn:0.20.3Individual
sklearn.linear_model.Ridge, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error,memory variant better,[scikit-learn]10828:8scikit-learn:0.19.2Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,time baseline better,[scikit-learn]10834:2, 10834:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,memory variant better,[scikit-learn]10834:4, 10834:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,score inconsistent[scikit-learn]10834:6, 10834:8scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.linear_model.Ridge, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.pipeline.make_pipeline,memory baseline better,score inconsistent[scikit-learn]10834:7scikit-learn:0.20.3Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,[scikit-learn]10835:2, 10835:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,score inconsistent[scikit-learn]10835:6scikit-learn:0.21.3Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,score inconsistent[scikit-learn]10835:7, 10835:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.decomposition.PCA,score inconsistent[scikit-learn]10839:5scikit-learn:0.24.2Individual
sklearn.decomposition.PCA,time baseline better,[scikit-learn]10839:7, 10839:8scikit-learn:0.23.2Individual
catboost.CatBoostRegressor,time variant better,score inconsistent[catboost]10844:1catboost:1.0.3Individual
catboost.CatBoostRegressor,time variant better,[catboost]10844:2, 10844:3, 10844:4, 10844:5, 10844:6, 16717:1, 16717:2, 16717:3, 16717:4, 16717:5, 16717:7catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23, catboost:0.20.2, catboost:1.0.3, catboost:0.17.5Individual
catboost.CatBoostRegressor,time baseline better,score inconsistent[catboost]10844:7, 10844:8, 10844:9, 10844:10, 16717:9, 16717:10, 16717:11catboost:0.17.5, catboost:0.16.5, catboost:0.15.2, catboost:0.12.2, catboost:0.10.3Individual
catboost.CatBoostRegressor,score inconsistent[catboost]10844:11, 16717:6, 16717:8catboost:0.10.3, catboost:0.20.2, catboost:0.16.5Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LinearRegression, sklearn.pipeline.make_pipeline,time baseline better,[scikit-learn]10870:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LinearRegression, sklearn.pipeline.make_pipeline,time variant better,[scikit-learn]10870:5scikit-learn:0.22Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LinearRegression, sklearn.pipeline.make_pipeline,memory baseline better,score inconsistent[scikit-learn]10870:7scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LinearRegression, sklearn.pipeline.make_pipeline,score inconsistent[scikit-learn]10870:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression,score inconsistent[scikit-learn]10877:1, 10877:4, 10877:7scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.20.3Individual
sklearn.linear_model.LinearRegression,memory baseline better,score inconsistent[scikit-learn]10877:2, 10877:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.LinearRegression,time variant better,score inconsistent[scikit-learn]10877:5, 10877:6, 16820:1, 16820:2, 16820:3, 16820:4, 16820:5, 16820:6, 16820:7scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.20.3Individual
sklearn.linear_model.LinearRegression,memory variant better,score inconsistent[scikit-learn]10877:8, 24413:4, 24413:6scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.21.3Individual
lightgbm.LGBMRegressor,memory variant better,score inconsistent[lightgbm]10878:2, 10878:3, 10878:5, 10878:7, 16426:7, 16431:5, 16431:6, 16431:7, 24320:2, 24339:2, 24339:3, 24339:4, 24401:2lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:2.3.1, lightgbm:2.1.2, lightgbm:2.2.3, lightgbm:3.0.0Individual
lightgbm.LGBMRegressor,time variant better,memory variant better,score inconsistent[lightgbm]10878:4, 10878:6, 16426:1, 16426:2, 16426:3, 16426:4, 16426:5, 16426:6, 16431:1, 16431:2, 16431:3, 16431:4, 24320:1, 24320:4, 24347:5, 24401:1, 24401:3lightgbm:3.0.0, lightgbm:2.2.3, lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:2.3.1Individual
lightgbm.LGBMRegressor, lightgbm.plot_importance,time baseline better,memory baseline better,[lightgbm]10883:6lightgbm:2.2.3Individual
lightgbm.LGBMRegressor, lightgbm.plot_importance,time variant better,[lightgbm]10883:7lightgbm:2.1.2Individual
sklearn.linear_model.Ridge, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,[scikit-learn]10884:4scikit-learn:0.22.1Individual
sklearn.linear_model.Ridge, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,[scikit-learn]10884:8scikit-learn:0.19.2Individual
catboost.Pool, catboost.train,time variant better,memory baseline better,score inconsistent[catboost]10886:1catboost:1.0.3Individual
catboost.Pool, catboost.train,time variant better,score inconsistent[catboost]10886:2, 10886:3, 10886:4, 10886:5catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Lambda, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.Dot, tensorflow.keras.models.Sequential, tensorflow.keras.layers.concatenate,time baseline better,memory baseline better,score inconsistent[tensorflow]11390:1, 11390:4tensorflow:2.7.0, tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Lambda, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.Dot, tensorflow.keras.models.Sequential, tensorflow.keras.layers.concatenate,time variant better,memory baseline better,score inconsistent[tensorflow]11390:2tensorflow:2.4.1Individual
lightgbm.LGBMRegressor,time variant better,[lightgbm]11428:4, 11456:3, 24422:3, 25793:2, 25793:3, 25793:4lightgbm:3.0.0, lightgbm:3.1.1, lightgbm:3.2.1Individual
lightgbm.LGBMRegressor,memory baseline better,[lightgbm]11456:7, 24306:7, 24336:4lightgbm:2.1.2, lightgbm:3.0.0Individual
cv2.imread, cv2.cvtColor,score inconsistent[opencv-python]12189:4, 12189:7, 16933:3, 16933:7, 16933:10opencv-python:4.2.0.34, opencv-python:4.1.0.25, opencv-python:4.5.1.48, opencv-python:3.4.2.17Individual
cv2.imread, cv2.cvtColor,memory variant better,[opencv-python]12189:8, 12189:9opencv-python:4.0.0.21, opencv-python:3.4.3.18Individual
cv2.imread, cv2.cvtColor,memory variant better,score inconsistent[opencv-python]12189:10opencv-python:3.4.2.17Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]12192:2, 12192:3, 17749:4scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]12192:6, 12192:7, 12192:8, 17749:3, 17749:7scikit-learn:1.0.1Individual
keras.layers.Dropout, keras.layers.MaxPooling2D, keras.layers.Activation, keras.models.Sequential, keras.layers.AveragePooling2D, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.Flatten,time baseline better,[keras]12242:9keras:2.3.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]12272:4, 12272:5, 12272:6, 12274:2, 12274:5, 12274:6, 12274:8, 12291:5, 12291:6, 24451:2, 24451:3, 24451:7scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,[scikit-learn]15006:2, 15006:5, 15095:6, 15095:7, 15095:8scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer,score inconsistent[scikit-learn]15006:6scikit-learn:0.21.3Individual
sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,score inconsistent[scikit-learn]15006:7scikit-learn:0.20.3Individual
sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,score inconsistent[scikit-learn]15006:8scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time variant better,[scikit-learn]15097:4scikit-learn:0.22.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time baseline better,[scikit-learn]15097:7scikit-learn:0.20.3Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,memory baseline better,[scikit-learn]15097:8scikit-learn:0.19.2Individual
sklearn.metrics.auc.format, sklearn.metrics.auc, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report, sklearn.metrics.roc_curve,time baseline better,[scikit-learn]15101:2scikit-learn:0.24.2Individual
sklearn.metrics.auc.format, sklearn.metrics.auc, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report, sklearn.metrics.roc_curve,time variant better,[scikit-learn]15101:5scikit-learn:0.22Individual
sklearn.metrics.auc.format, sklearn.metrics.auc, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report, sklearn.metrics.roc_curve,memory baseline better,[scikit-learn]15101:8scikit-learn:0.19.2Individual
sklearn.pipeline.Pipeline, sklearn.svm.LinearSVC,time baseline better,memory variant better,score inconsistent[scikit-learn]15108:3, 15108:4, 15108:5, 15108:6scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Individual
sklearn.pipeline.Pipeline, sklearn.svm.LinearSVC,time baseline better,memory variant better,[scikit-learn]15108:7, 15108:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
torch.cuda.manual_seed_all, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.manual_seed, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.cuda.manual_seed, torch.utils.data.DataLoader, torch.softmax, torch.nn.LeakyReLU, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time variant better,[torch]15517:2torch:1.8.1Individual
torch.cuda.manual_seed_all, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.manual_seed, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.utils.data.DataLoader, torch.softmax, torch.nn.LeakyReLU, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,memory baseline better,score inconsistent[torch]15520:1torch:1.9.0Individual
torch.cuda.manual_seed_all, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.manual_seed, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.utils.data.DataLoader, torch.softmax, torch.nn.LeakyReLU, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,score inconsistent[torch]15520:2torch:1.8.1Individual
torch.cuda.manual_seed_all, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.manual_seed, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.utils.data.DataLoader, torch.softmax, torch.nn.LeakyReLU, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,memory variant better,score inconsistent[torch]15520:3torch:1.7.1Individual
torch.nn.CrossEntropyLoss, torch.as_tensor, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.optim.lr_scheduler.StepLR, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Dropout2d, torch.nn.Linear, torch.sum, torch.no_grad, torch.nn.functional.dropout, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.max, torch.device,time baseline better,score inconsistent[torch]15533:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.as_tensor, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.optim.lr_scheduler.StepLR, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Dropout2d, torch.nn.Linear, torch.sum, torch.no_grad, torch.nn.functional.dropout, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.max, torch.device,time baseline better,memory variant better,score inconsistent[torch]15533:2torch:1.8.1Individual
torch.nn.CrossEntropyLoss, torch.as_tensor, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.optim.lr_scheduler.StepLR, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Dropout2d, torch.nn.Linear, torch.sum, torch.no_grad, torch.nn.functional.dropout, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.max, torch.device,time baseline better,memory baseline better,score inconsistent[torch]15533:3torch:1.7.1Individual
torch.nn.AvgPool2d, torch.nn.functional.leaky_relu, torch.nn.BatchNorm2d, torch.FloatTensor, torch.nn.Conv2d, torch.optim.Adam, torch.nn.BCELoss, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.nn.Sigmoid, torch.nn.MaxPool2d, torch.device,score inconsistent[torch]15538:3torch:1.7.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.GlobalMaxPooling2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.preprocessing.image.load_img,time baseline better,score inconsistent[tensorflow]15548:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.GlobalMaxPooling2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.preprocessing.image.load_img,time baseline better,memory variant better,score inconsistent[tensorflow]15548:4tensorflow:2.2.0Individual
torch.nn.CrossEntropyLoss, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.load, torch.nn.functional.relu, torch.utils.data.Dataset, torch.nn.Linear, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool2d,memory baseline better,score inconsistent[torch]15570:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.load, torch.nn.functional.relu, torch.utils.data.Dataset, torch.nn.Linear, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool2d,time baseline better,memory variant better,[torch]15570:3torch:1.7.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.MaxPool2d,memory baseline better,score inconsistent[torch]15588:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.MaxPool2d,time baseline better,[torch]15588:3torch:1.7.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.is_tensor, torch.nn.Conv2d, torch.optim.Adam, torch.load, torch.nn.Linear, torch.cuda.is_available, torch.utils.data.random_split, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool2d,memory baseline better,[torch]15611:1torch:1.9.0Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.is_tensor, torch.nn.Conv2d, torch.optim.Adam, torch.load, torch.nn.Linear, torch.cuda.is_available, torch.utils.data.random_split, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool2d,score inconsistent[torch]15611:3torch:1.7.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.Sequential, torch.device,score inconsistent[torch]15612:2, 15635:2, 15675:2torch:1.8.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.Sequential, torch.device,time baseline better,[torch]15612:3torch:1.7.1Individual
torch.nn.CrossEntropyLoss, torch.optim.SGD, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Linear, torch.no_grad, torch.nn.functional.dropout, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.device,memory baseline better,[torch]15623:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.optim.SGD, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Linear, torch.no_grad, torch.nn.functional.dropout, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.device,score inconsistent[torch]15623:2torch:1.8.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.nn.functional.dropout, torch.nn.functional.max_pool2d, torch.utils.data.DataLoader, torch.max, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.device, torch.nn.Dropout2d,memory baseline better,[torch]15645:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.nn.functional.dropout, torch.nn.functional.max_pool2d, torch.utils.data.DataLoader, torch.max, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.device, torch.nn.Dropout2d,score inconsistent[torch]15645:3torch:1.7.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.utils.data.DataLoader, torch.max, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.Dropout2d,time baseline better,memory baseline better,score inconsistent[torch]15672:1torch:1.9.0Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.utils.data.DataLoader, torch.max, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.Dropout2d,time baseline better,score inconsistent[torch]15672:2torch:1.8.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.utils.data.DataLoader, torch.max, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.Dropout2d,time variant better,memory variant better,score inconsistent[torch]15672:3torch:1.7.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]15707:4, 15707:6, 15707:7, 15707:8tensorflow:2.2.0, tensorflow:2.3.1, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,score inconsistent[tensorflow]15707:9tensorflow:2.0.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.MaxPool2d,memory baseline better,[torch]15717:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.MaxPool2d,score inconsistent[torch]15717:2torch:1.8.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.nn.functional.dropout, torch.nn.functional.max_pool2d, torch.utils.data.DataLoader, torch.max, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.device, torch.nn.Dropout2d,memory baseline better,score inconsistent[torch]15720:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.max, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.MaxPool2d, torch.device,time variant better,[torch]15767:2torch:1.8.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.max, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.MaxPool2d, torch.device,score inconsistent[torch]15767:3torch:1.7.1Individual
torch.set_grad_enabled, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.functional.leaky_relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.Linear, torch.sum, torch.cuda.is_available, torch.utils.data.DataLoader, torch.max, torch.nn.MaxPool2d, torch.device,memory baseline better,[torch]15786:1torch:1.9.0Individual
torch.set_grad_enabled, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.functional.leaky_relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.Linear, torch.sum, torch.cuda.is_available, torch.utils.data.DataLoader, torch.max, torch.nn.MaxPool2d, torch.device,time baseline better,[torch]15786:2torch:1.8.1Individual
torch.set_grad_enabled, torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.functional.leaky_relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.Linear, torch.sum, torch.cuda.is_available, torch.utils.data.DataLoader, torch.max, torch.nn.MaxPool2d, torch.device,time baseline better,memory variant better,[torch]15786:3torch:1.7.1Individual
keras.layers.Dropout, keras.layers.Activation, keras.models.Sequential, keras.layers.Dense, keras.callbacks.ReduceLROnPlateau, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.optimizers.adam, keras.callbacks.EarlyStopping, keras.layers.Flatten,memory variant better,[keras]15788:4keras:2.4.3Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC,score inconsistent[scikit-learn]15796:2, 15796:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC,memory baseline better,[scikit-learn]15796:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,score inconsistent[tensorflow]15798:6tensorflow:2.0.0Individual
torch.nn.Relu, torch.optim.Adagrad, torch.nn.CrossEntropyLoss, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.autograd.Variable, torch.nn.Linear, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.nn.Sequential,memory baseline better,score inconsistent[torch]15842:1torch:1.9.0Individual
torch.nn.Relu, torch.optim.Adagrad, torch.nn.CrossEntropyLoss, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.autograd.Variable, torch.nn.Linear, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.nn.Sequential,score inconsistent[torch]15842:2torch:1.8.1Individual
torch.nn.Relu, torch.optim.Adagrad, torch.nn.CrossEntropyLoss, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.autograd.Variable, torch.nn.Linear, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.nn.Sequential,time variant better,memory variant better,score inconsistent[torch]15842:3torch:1.7.1Individual
torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.functional.leaky_relu, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.max, torch.nn.MaxPool2d, torch.device,time variant better,score inconsistent[torch]15864:3torch:1.7.1Individual
torch.nn.CrossEntropyLoss, torch.nn.AvgPool2d, torch.nn.functional.leaky_relu, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.max, torch.nn.MaxPool2d, torch.device,memory variant better,[torch]15895:2torch:1.8.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.Model,memory variant better,[tensorflow]15898:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.Model,time baseline better,memory variant better,[tensorflow]15898:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.Model,time baseline better,[tensorflow]15898:5tensorflow:2.1.0Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]16260:2, 16261:2, 16261:4scikit-learn:0.24.2, scikit-learn:0.22.1Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time baseline better,memory variant better,score inconsistent[scikit-learn]16260:6, 16261:8scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory variant better,score inconsistent[scikit-learn]16260:7, 16260:8, 16261:6, 16261:7scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,memory baseline better,score inconsistent[scikit-learn]16262:2, 16262:6, 16262:7, 25420:2, 25420:6scikit-learn:1.0.1, scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]16262:3, 16262:4, 16262:5, 16262:8, 25791:2, 25791:3scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.naive_bayes.GaussianNB, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,memory baseline better,[scikit-learn]16268:2, 16268:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.naive_bayes.GaussianNB, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time baseline better,[scikit-learn]16268:6scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.naive_bayes.GaussianNB, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,memory variant better,[scikit-learn]16268:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.GridSearchCV, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16270:7, 16354:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.GridSearchCV, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]16270:8, 16354:3scikit-learn:0.19.2, scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]16271:8, 16475:8, 19517:4scikit-learn:0.19.2, scikit-learn:0.22.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory baseline better,[scikit-learn]16277:2, 16477:2, 16477:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,memory baseline better,[scikit-learn]16277:3scikit-learn:0.23.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time variant better,[scikit-learn]16277:4scikit-learn:0.22.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory variant better,[scikit-learn]16277:8, 16477:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16279:8, 16389:8, 16471:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.metrics.auc, sklearn.neighbors.KNeighborsClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]16280:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.metrics.auc, sklearn.neighbors.KNeighborsClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,time baseline better,memory baseline better,[scikit-learn]16280:3scikit-learn:0.23.2Individual
sklearn.decomposition.PCA, sklearn.metrics.auc, sklearn.neighbors.KNeighborsClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16280:6scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.metrics.auc, sklearn.neighbors.KNeighborsClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16280:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.metrics.auc, sklearn.neighbors.KNeighborsClassifier, sklearn.discriminant_analysis.LinearDiscriminantAnalysis, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16280:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.mixture.GaussianMixture, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.model_selection.StratifiedKFold,time baseline better,memory baseline better,[scikit-learn]16303:3scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.mixture.GaussianMixture, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16303:6scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.mixture.GaussianMixture, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16303:8scikit-learn:0.19.2Individual
sklearn.svm.NuSVC, sklearn.covariance.LedoitWolf,memory baseline better,[scikit-learn]16328:2scikit-learn:0.24.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]16332:2scikit-learn:0.24.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time baseline better,memory baseline better,[scikit-learn]16332:3scikit-learn:0.23.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]16332:7scikit-learn:0.20.3Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]16332:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16336:2, 16336:3, 16383:3, 16389:3, 16391:3, 16471:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16336:6, 16383:6, 16389:6, 16391:7, 16471:6scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,[scikit-learn]16336:8, 16383:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.GridSearchCV, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,score inconsistent[scikit-learn]16354:6scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time baseline better,memory baseline better,[scikit-learn]16360:2, 16360:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16360:6scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,[scikit-learn]16360:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16362:6, 16370:7, 16488:6scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,[scikit-learn]16362:8scikit-learn:0.19.2Individual
sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.normalize,time baseline better,[scikit-learn]16365:2scikit-learn:0.24.2Individual
sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.normalize,memory variant better,[scikit-learn]16365:4scikit-learn:0.22.1Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]16370:2, 16370:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]16370:6scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,score inconsistent[scikit-learn]16370:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.pipeline.Pipeline, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold,time baseline better,score inconsistent[scikit-learn]16380:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.pipeline.Pipeline, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold,score inconsistent[scikit-learn]16380:3scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.pipeline.Pipeline, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold,memory variant better,[scikit-learn]16380:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,score inconsistent[scikit-learn]16391:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.neighbors.KNeighborsClassifier, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]16392:2scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.neighbors.KNeighborsClassifier, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16392:3scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.neighbors.KNeighborsClassifier, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16392:7scikit-learn:0.20.3Individual
sklearn.metrics.roc_auc_score, sklearn.neighbors.KNeighborsClassifier, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,score inconsistent[scikit-learn]16392:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16395:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16395:3, 16395:4, 16395:5scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]16395:7scikit-learn:0.20.3Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16395:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16403:6scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16403:7scikit-learn:0.20.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time baseline better,memory variant better,[scikit-learn]16403:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16405:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16405:4, 16405:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]16405:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16405:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16408:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16408:3, 16408:4, 16408:5scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]16408:7scikit-learn:0.20.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.svm.NuSVC, sklearn.decomposition.TruncatedSVD, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16408:8scikit-learn:0.19.2Individual
sklearn.svm.NuSVC, sklearn.svm.SVC, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression,time variant better,memory baseline better,score inconsistent[scikit-learn]16419:2scikit-learn:0.24.2Individual
sklearn.svm.NuSVC, sklearn.svm.SVC, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression,memory baseline better,score inconsistent[scikit-learn]16419:3scikit-learn:0.23.2Individual
sklearn.svm.NuSVC, sklearn.svm.SVC, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression,memory variant better,[scikit-learn]16419:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]16447:6scikit-learn:0.21.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]16447:7scikit-learn:0.20.3Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.model_selection.StratifiedKFold,time baseline better,memory variant better,[scikit-learn]16447:8scikit-learn:0.19.2Individual
catboost.CatBoostClassifier, catboost.Pool,score inconsistent[catboost]16462:2, 16462:7catboost:0.25.1, catboost:0.17.5Individual
catboost.CatBoostClassifier, catboost.Pool,time variant better,score inconsistent[catboost]16462:3, 17747:5catboost:0.24.4, catboost:0.23Individual
catboost.CatBoostClassifier, catboost.Pool,time baseline better,score inconsistent[catboost]16462:8, 16462:10, 17747:2, 17747:3, 17747:4catboost:0.16.5, catboost:0.12.2, catboost:0.25.1, catboost:0.24.4, catboost:0.23.2Individual
catboost.CatBoostClassifier, catboost.Pool,time baseline better,[catboost]16462:9, 20690:2, 20690:6catboost:0.15.2, catboost:0.25.1, catboost:0.20.2Individual
catboost.CatBoostClassifier, catboost.Pool,time baseline better,memory variant better,[catboost]16462:11catboost:0.10.3Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,[scikit-learn]16477:6scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.neighbors.KNeighborsClassifier, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16484:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.svm.SVC, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16485:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,time baseline better,memory baseline better,[scikit-learn]16488:3scikit-learn:0.23.2Individual
sklearn.decomposition.PCA, sklearn.metrics.roc_auc_score, sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis, sklearn.feature_selection.VarianceThreshold, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]16488:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time variant better,memory baseline better,score inconsistent[tensorflow]16701:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,memory baseline better,[tensorflow]16701:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time variant better,[tensorflow]16701:3, 16701:5tensorflow:2.3.1, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time variant better,score inconsistent[tensorflow]16701:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,score inconsistent[tensorflow]16701:7, 16701:8tensorflow:1.15.2, tensorflow:1.14.0Individual
lightgbm.LGBMRegressor,time variant better,score inconsistent[lightgbm]16732:1, 16732:2, 16732:3, 16732:4, 16732:5, 24336:5, 24347:1, 24347:7lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.1.2Individual
lightgbm.LGBMRegressor,time variant better,memory baseline better,score inconsistent[lightgbm]16732:6, 16732:7, 24347:2, 24347:6, 24401:7lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.2.1Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,[scikit-learn]16750:2, 16750:3, 23938:7scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.20.3Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,memory variant better,[scikit-learn]16750:4scikit-learn:0.22.1Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory variant better,[scikit-learn]16750:5, 23938:8, 24156:8scikit-learn:0.22, scikit-learn:0.19.2Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time variant better,memory baseline better,[scikit-learn]16750:7scikit-learn:0.20.3Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time variant better,memory variant better,[scikit-learn]16750:8scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestRegressor,time variant better,memory variant better,score inconsistent[scikit-learn]16774:1, 16774:2, 16774:3, 16774:5, 16774:6, 16774:7, 16774:8scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestRegressor,time baseline better,memory variant better,score inconsistent[scikit-learn]16774:4scikit-learn:0.22.1Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]16785:2scikit-learn:0.24.2Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,time baseline better,memory baseline better,[scikit-learn]16785:3scikit-learn:0.23.2Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,time variant better,[scikit-learn]16785:7scikit-learn:0.20.3Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,time variant better,memory variant better,[scikit-learn]16785:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression, sklearn.neighbors.KNeighborsRegressor, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]16802:3, 16802:4, 16802:5scikit-learn:1.0.1Individual
sklearn.linear_model.LinearRegression, sklearn.neighbors.KNeighborsRegressor, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]16802:6, 16802:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.linear_model.LinearRegression, sklearn.neighbors.KNeighborsRegressor, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]16802:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression, sklearn.neighbors.KNeighborsRegressor, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]16802:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression,time variant better,memory baseline better,score inconsistent[scikit-learn]16820:8, 16831:8, 24413:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression,time variant better,memory variant better,score inconsistent[scikit-learn]16831:1, 16831:2, 16831:3, 16831:4, 16831:5, 16831:6, 16831:7, 24413:1, 24413:2, 24413:7scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Individual
cv2.imread, cv2.cvtColor,time variant better,[opencv-python]16933:6opencv-python:4.1.1.26Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.add, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.nn.BatchNorm2d, torch.tensor, torch.nn.Conv2d, torch.nn.functional.softmax, torch.load, torch.manual_seed, torch.nn.functional.relu, torch.nn.Linear, torch.save, torch.nn.functional.avg_pool2d, torch.nn.Sequential, torch.device,time baseline better,[torch]17109:1torch:1.9.0Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.add, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.nn.BatchNorm2d, torch.tensor, torch.nn.Conv2d, torch.nn.functional.softmax, torch.load, torch.manual_seed, torch.nn.functional.relu, torch.nn.Linear, torch.save, torch.nn.functional.avg_pool2d, torch.nn.Sequential, torch.device,time baseline better,memory variant better,[torch]17109:2, 17109:3torch:1.8.1, torch:1.7.1Individual
cv2.imread, cv2.resize,time variant better,[opencv-python]17109:4, 17109:6, 17109:7, 17109:8, 17360:4, 17360:9opencv-python:4.2.0.34, opencv-python:4.1.1.26, opencv-python:4.1.0.25, opencv-python:4.0.0.21, opencv-python:4.5.1.48, opencv-python:4.4.0.46Individual
sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]17193:6scikit-learn:1.0.1Individual
cv2.imread, cv2.resize,time baseline better,score inconsistent[opencv-python]17360:3opencv-python:4.5.1.48Individual
cv2.imread, cv2.resize,time variant better,score inconsistent[opencv-python]17360:5, 17360:6, 17360:7, 17360:8, 17360:10opencv-python:4.5.1.48, opencv-python:4.4.0.46Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]17618:1, 17618:4, 17618:5, 17619:1, 17619:5scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,memory baseline better,score inconsistent[scikit-learn]17618:2, 17618:3, 17619:2, 17619:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,memory variant better,score inconsistent[scikit-learn]17618:6, 17618:7, 17619:6, 17619:7, 17619:8scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory variant better,score inconsistent[scikit-learn]17618:8scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]17619:4scikit-learn:0.22.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time baseline better,memory baseline better,score inconsistent[tensorflow]17625:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time baseline better,score inconsistent[tensorflow]17625:3, 17625:4, 17625:5, 17625:7, 25958:8tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time baseline better,memory variant better,score inconsistent[tensorflow]17625:9, 18110:9, 25958:9, 25997:5, 25997:7, 25997:8tensorflow:1.13.1, tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.14.0Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression,time variant better,memory variant better,score inconsistent[scikit-learn]17626:1, 17626:4, 17626:5, 17626:6, 17626:7, 17626:8, 17627:1, 17627:4, 17627:5, 17627:6, 17627:7, 17627:8, 17737:1, 17737:4, 17737:5, 17737:6, 17737:7, 17737:8scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression,time variant better,score inconsistent[scikit-learn]17626:2, 17626:3, 17627:2, 17627:3, 17737:2, 17737:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,memory baseline better,score inconsistent[tensorflow]17629:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,score inconsistent[tensorflow]17629:2, 17629:4, 17629:5, 17629:7, 25958:5, 25997:6tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time variant better,[tensorflow]17629:3, 25958:2tensorflow:2.3.1, tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,memory variant better,score inconsistent[tensorflow]17629:9, 25997:9tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.concatenate, tensorflow.keras.layers.Reshape,time variant better,memory variant better,[tensorflow]17639:2tensorflow:2.4.1Individual
sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]17639:4, 17639:5, 17639:6scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.concatenate, tensorflow.keras.layers.Reshape,memory variant better,[tensorflow]17639:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.concatenate, tensorflow.keras.layers.Reshape,memory variant better,score inconsistent[tensorflow]17639:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.concatenate, tensorflow.keras.layers.Reshape,time variant better,memory variant better,score inconsistent[tensorflow]17639:6tensorflow:2.0.0Individual
category_encoders.TargetEncoder,time variant better,memory variant better,[category_encoders]17642:2, 17642:3, 17642:4, 17642:5, 17712:3, 17712:4, 17744:2, 17744:3, 17744:4, 17744:5, 17745:3, 17745:4, 17745:5category_encoders:1.3.0, category_encoders:2.3.0Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,[scikit-learn]17647:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,score inconsistent[scikit-learn]17647:2, 24974:6, 24974:7scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]17647:3scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]17647:4scikit-learn:0.22.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]17647:5scikit-learn:0.22Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]17647:5scikit-learn:0.22Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]17647:8scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,score inconsistent[scikit-learn]17647:8scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time variant better,memory baseline better,score inconsistent[scikit-learn]17648:1, 17648:2, 17648:3, 17648:4, 17648:5scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time variant better,memory variant better,score inconsistent[scikit-learn]17648:6, 17648:7, 17648:8scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,memory baseline better,score inconsistent[tensorflow]17666:1, 17666:5, 17775:5tensorflow:2.7.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time variant better,memory baseline better,score inconsistent[tensorflow]17666:2, 17666:3, 17666:4tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time baseline better,memory variant better,score inconsistent[tensorflow]17666:6tensorflow:1.15.2Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time baseline better,memory baseline better,score inconsistent[tensorflow]17666:7tensorflow:2.0.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,memory variant better,score inconsistent[tensorflow]17666:8, 19617:5tensorflow:1.14.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time variant better,memory variant better,score inconsistent[tensorflow]17666:9tensorflow:1.13.1Individual
sklearn.calibration.CalibratedClassifierCV, sklearn.metrics.precision_score, sklearn.calibration.calibration_curve, sklearn.metrics.f1_score, sklearn.naive_bayes.GaussianNB, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC, sklearn.metrics.recall_score, sklearn.metrics.brier_score_loss, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,[scikit-learn]17672:2scikit-learn:0.24.2Individual
sklearn.calibration.CalibratedClassifierCV, sklearn.metrics.precision_score, sklearn.calibration.calibration_curve, sklearn.metrics.f1_score, sklearn.naive_bayes.GaussianNB, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC, sklearn.metrics.recall_score, sklearn.metrics.brier_score_loss, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]17672:2scikit-learn:0.24.2Individual
sklearn.calibration.CalibratedClassifierCV, sklearn.metrics.precision_score, sklearn.calibration.calibration_curve, sklearn.metrics.f1_score, sklearn.naive_bayes.GaussianNB, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC, sklearn.metrics.recall_score, sklearn.metrics.brier_score_loss, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]17672:7scikit-learn:0.20.3Individual
xgboost.XGBClassifier,memory variant better,score inconsistent[xgboost]17676:1, 17676:2, 17761:6, 17761:7, 20683:4, 24572:3, 24894:4, 24969:7, 25136:5xgboost:1.5.1, xgboost:1.4.2, xgboost:1.0.2, xgboost:0.90, xgboost:1.2.1, xgboost:1.3.3, xgboost:1.1.1Individual
xgboost.XGBClassifier,time baseline better,memory variant better,score inconsistent[xgboost]17676:3, 20683:6, 24572:1, 24572:2, 25136:4, 25136:6xgboost:1.3.3, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.2.1Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression,time variant better,memory variant better,score inconsistent[scikit-learn]17678:1, 17678:6, 17757:1, 17757:4, 17757:5, 17757:6, 17757:8scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression,time variant better,score inconsistent[scikit-learn]17678:2, 17757:2, 17757:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression,memory variant better,score inconsistent[scikit-learn]17678:7, 17678:8, 17757:7scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix, sklearn.metrics.roc_curve,time baseline better,memory baseline better,score inconsistent[scikit-learn]17680:1, 17681:1scikit-learn:1.0.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix, sklearn.metrics.roc_curve,time baseline better,memory baseline better,[scikit-learn]17680:2, 17681:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix, sklearn.metrics.roc_curve,time variant better,memory variant better,score inconsistent[scikit-learn]17680:3, 17680:4, 17680:5, 17680:6, 17680:7, 17680:8, 17681:3, 17681:5, 17681:7scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix, sklearn.metrics.roc_curve,time variant better,memory variant better,[scikit-learn]17681:4, 17681:6, 17681:8scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.preprocessing.LabelEncoder,memory baseline better,score inconsistent[scikit-learn]17694:6scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]17694:6, 17694:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.linear_model.LogisticRegression, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,score inconsistent[scikit-learn]17694:7, 17694:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
lightgbm.LGBMClassifier,time baseline better,score inconsistent[lightgbm]17702:5, 24531:6, 24531:7, 25054:5, 25078:6lightgbm:2.3.1, lightgbm:2.2.3, lightgbm:2.1.2Individual
lightgbm.LGBMClassifier,score inconsistent[lightgbm]17702:6, 19546:2, 19546:3, 19546:4, 19575:2, 19575:3, 19575:4, 19575:5, 19575:6, 19575:7, 24575:2, 24575:5, 24575:6, 24575:7, 24895:4, 24895:7, 24988:5, 24988:6, 24988:7, 25054:4, 25054:6, 25078:3, 25078:4, 25078:7, 25121:5, 25313:7lightgbm:2.2.3, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.1.2Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression,memory baseline better,[scikit-learn]17704:2, 17704:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression,time variant better,[scikit-learn]17704:5scikit-learn:0.22Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression,time baseline better,[scikit-learn]17704:8scikit-learn:0.19.2Individual
category_encoders.TargetEncoder,memory variant better,[category_encoders]17706:2, 17706:3, 17706:4, 17706:5, 19517:2, 19517:3, 19546:2, 19546:3, 19553:3category_encoders:2.3.0, category_encoders:1.3.0Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]17706:2, 17706:3, 17706:4, 17706:5, 17706:7, 25001:8scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.19.2Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]17708:2, 17708:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]17708:7scikit-learn:0.20.3Individual
sklearn.model_selection.cross_validate, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]17708:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.math.tanh, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.utils.get_custom_objects, tensorflow.py_function, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate, tensorflow.math.softplus,time variant better,[tensorflow]17709:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.math.tanh, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.utils.get_custom_objects, tensorflow.py_function, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate, tensorflow.math.softplus,time baseline better,score inconsistent[tensorflow]17709:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.math.tanh, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.utils.get_custom_objects, tensorflow.py_function, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate, tensorflow.math.softplus,time baseline better,memory baseline better,score inconsistent[tensorflow]17709:5tensorflow:2.1.0Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]17709:6, 17709:7, 17709:8, 17775:5, 17775:7, 17775:8, 19617:6, 19617:7, 19617:8, 24614:2scikit-learn:1.0.1, scikit-learn:0.20.3Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.math.tanh, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.utils.get_custom_objects, tensorflow.py_function, tensorflow.keras.layers.Activation, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate, tensorflow.math.softplus,memory baseline better,score inconsistent[tensorflow]17709:6tensorflow:2.0.0Individual
category_encoders.TargetEncoder,time variant better,[category_encoders]17712:2category_encoders:2.3.0Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,score inconsistent[scikit-learn]17712:2scikit-learn:0.21.3Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]17712:3, 17712:6, 17745:5, 17745:6scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,memory baseline better,[scikit-learn]17712:4, 17712:5scikit-learn:0.23.2, scikit-learn:0.24.2Individual
catboost.CatBoostClassifier,score inconsistent[catboost]17724:6, 17724:7, 17746:7, 24959:11, 25326:7, 25326:8, 25326:9, 25477:4, 25477:5, 25477:6catboost:0.20.2, catboost:0.17.5, catboost:0.10.3, catboost:0.16.5, catboost:0.15.2, catboost:0.23.2, catboost:0.23Individual
catboost.CatBoostClassifier,memory baseline better,score inconsistent[catboost]17724:8, 24959:6, 24959:7, 25133:1, 25133:2, 25133:3, 25133:6catboost:0.16.5, catboost:0.20.2, catboost:0.17.5, catboost:1.0.3, catboost:0.25.1, catboost:0.24.4Individual
catboost.CatBoostClassifier,time baseline better,memory baseline better,score inconsistent[catboost]17724:9, 24959:10, 25133:4, 25133:5, 25133:7, 25133:8, 25133:9catboost:0.15.2, catboost:0.12.2, catboost:0.23.2, catboost:0.23, catboost:0.17.5, catboost:0.16.5Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,time variant better,memory variant better,score inconsistent[scikit-learn]17730:3, 17730:4, 17730:5, 17730:6, 17730:7scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,score inconsistent[scikit-learn]17745:2scikit-learn:0.21.3Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,[scikit-learn]17745:3, 17745:4, 17745:7scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:1.0.1Individual
catboost.CatBoostClassifier,time baseline better,score inconsistent[catboost]17746:10, 25477:7, 25477:8, 25477:9catboost:0.12.2, catboost:0.17.5, catboost:0.16.5, catboost:0.15.2Individual
catboost.CatBoostClassifier,time baseline better,[catboost]17746:11, 17983:2, 17983:3, 17983:4, 17983:5, 17983:6, 17983:7, 24603:5, 24603:10catboost:0.10.3, catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23, catboost:0.20.2, catboost:0.17.5, catboost:0.12.2Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,[scikit-learn]17749:1, 17749:2scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,[scikit-learn]17749:2scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,score inconsistent[scikit-learn]17749:3, 17749:7scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]17749:4scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,score inconsistent[scikit-learn]17749:5scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]17749:5scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]17749:6scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]17749:6scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.classification_report,time variant better,memory baseline better,[scikit-learn]17755:1, 17755:2scikit-learn:1.0.1, scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.classification_report,time variant better,[scikit-learn]17755:6scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.classification_report,time variant better,memory baseline better,score inconsistent[scikit-learn]17755:7scikit-learn:0.20.3Individual
sklearn.metrics.auc, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix, sklearn.metrics.roc_curve,score inconsistent[scikit-learn]17759:1, 17759:4, 17759:5, 17759:7, 17759:8scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.metrics.auc, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix, sklearn.metrics.roc_curve,time baseline better,[scikit-learn]17759:6scikit-learn:0.21.3Individual
xgboost.XGBClassifier,time baseline better,memory variant better,[xgboost]17761:3, 24894:7, 24969:3xgboost:1.3.3, xgboost:0.90Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]17761:6, 17761:7scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]17761:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,score inconsistent[tensorflow]17775:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time variant better,memory baseline better,[tensorflow]17775:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,memory baseline better,[tensorflow]17775:3, 17775:4, 19617:6tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.0.0Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time baseline better,memory baseline better,[tensorflow]17775:6tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.utils.Progbar, tensorflow.keras.regularizers.l2, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,score inconsistent[tensorflow]17779:6tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.utils.Progbar, tensorflow.keras.regularizers.l2, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,memory variant better,[tensorflow]17779:9tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]17959:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]17959:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,score inconsistent[tensorflow]17959:5tensorflow:2.1.0Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]17962:2, 17962:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]17962:7scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split,time variant better,memory variant better,[scikit-learn]17962:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.neural_network.MLPClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]17964:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.neural_network.MLPClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time baseline better,memory baseline better,[scikit-learn]17964:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.neural_network.MLPClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory variant better,score inconsistent[scikit-learn]17964:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.Input, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.layers.concatenate, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D, tensorflow.keras.Model,time variant better,[tensorflow]17965:6tensorflow:2.0.0Individual
sklearn.decomposition.PCA, sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.cross_val_score,time baseline better,[scikit-learn]17971:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.cross_val_score,time variant better,[scikit-learn]17971:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.cross_val_score,memory variant better,[scikit-learn]17971:8scikit-learn:0.19.2Individual
sklearn.preprocessing.LabelBinarizer, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]17974:6, 17974:7, 17974:8scikit-learn:1.0.1Individual
torch.nn.functional.log_softmax, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.functional.nll_loss, torch.tensor, torch.utils.data.TensorDataset, torch.nn.Conv2d, torch.manual_seed, torch.nn.functional.relu, torch.nn.Dropout2d, torch.nn.Linear, torch.no_grad, torch.nn.functional.dropout, torch.utils.data.DataLoader,memory variant better,score inconsistent[torch]17975:1torch:1.7.1Individual
torch.nn.functional.log_softmax, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.functional.nll_loss, torch.tensor, torch.utils.data.TensorDataset, torch.nn.Conv2d, torch.manual_seed, torch.nn.functional.relu, torch.nn.Dropout2d, torch.nn.Linear, torch.no_grad, torch.nn.functional.dropout, torch.utils.data.DataLoader,time baseline better,[torch]17975:2torch:1.8.1Individual
torch.nn.functional.log_softmax, torch.optim.SGD, torch.nn.functional.max_pool2d, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.functional.nll_loss, torch.tensor, torch.utils.data.TensorDataset, torch.nn.Conv2d, torch.manual_seed, torch.nn.functional.relu, torch.nn.Dropout2d, torch.nn.Linear, torch.no_grad, torch.nn.functional.dropout, torch.utils.data.DataLoader,time baseline better,memory baseline better,[torch]17975:3torch:1.9.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC,time variant better,[scikit-learn]17978:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC,time baseline better,[scikit-learn]17978:4scikit-learn:0.22.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC,score inconsistent[scikit-learn]17978:6scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC,memory baseline better,score inconsistent[scikit-learn]17978:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC,memory variant better,score inconsistent[scikit-learn]17978:8scikit-learn:0.19.2Individual
catboost.CatBoostClassifier,time baseline better,memory baseline better,[catboost]17983:1, 24959:8, 24959:9catboost:1.0.3, catboost:0.16.5, catboost:0.15.2Individual
catboost.CatBoostClassifier,time baseline better,memory variant better,[catboost]17983:8, 17983:9, 20177:8, 20177:9catboost:0.16.5, catboost:0.15.2Individual
catboost.CatBoostClassifier,time baseline better,memory variant better,score inconsistent[catboost]17983:11catboost:0.10.3Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]17991:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]17992:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,score inconsistent[tensorflow]17994:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18001:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,score inconsistent[tensorflow]18003:7tensorflow:2.0.0Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]18004:3scikit-learn:0.23.2Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]18004:5scikit-learn:0.22Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]18004:6, 18004:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,memory baseline better,score inconsistent[scikit-learn]18004:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,score inconsistent[tensorflow]18005:5, 25417:6, 25417:8tensorflow:2.1.0, tensorflow:2.0.0, tensorflow:1.14.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.AveragePooling2D, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.ReLU, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,[tensorflow]18019:6tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical,time variant better,memory baseline better,score inconsistent[tensorflow]18020:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical,memory baseline better,[tensorflow]18020:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical,time baseline better,score inconsistent[tensorflow]18020:6tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,score inconsistent[tensorflow]18025:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,memory baseline better,[tensorflow]18025:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,[tensorflow]18025:9tensorflow:1.13.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.losses.CategoricalCrossentropy, tensorflow.keras.Sequential, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.backend.eval, tensorflow.one_hot, tensorflow.keras.optimizers.schedules.ExponentialDecay, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.regularizers.l2, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Conv2D,memory baseline better,[tensorflow]18037:4tensorflow:2.2.0Individual
tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Activation, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.applications.DenseNet121, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,score inconsistent[tensorflow]18040:3tensorflow:2.3.1Individual
tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Activation, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.applications.DenseNet121, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,score inconsistent[tensorflow]18040:4tensorflow:2.2.0Individual
keras.layers.MaxPooling2D, keras.models.Sequential, keras.layers.Dense, keras.layers.Conv2D, keras.layers.Flatten,time variant better,score inconsistent[keras]18041:9keras:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,score inconsistent[tensorflow]18042:6tensorflow:2.0.0Individual
sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory variant better,[scikit-learn]18049:4, 18049:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,memory baseline better,score inconsistent[scikit-learn]18049:6scikit-learn:0.21.3Individual
sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,score inconsistent[scikit-learn]18049:7, 18049:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time variant better,memory variant better,[tensorflow]18051:2, 18051:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,memory baseline better,score inconsistent[tensorflow]18051:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,score inconsistent[tensorflow]18051:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,memory variant better,score inconsistent[tensorflow]18051:6tensorflow:1.15.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,score inconsistent[tensorflow]18051:7tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,memory variant better,score inconsistent[tensorflow]18051:8tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,score inconsistent[tensorflow]18057:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,[tensorflow]18057:7tensorflow:2.0.0Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,memory baseline better,[scikit-learn]18058:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,memory variant better,[scikit-learn]18058:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]18059:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]18059:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]18060:6scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]18060:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]18060:8scikit-learn:0.19.2Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split,time baseline better,memory baseline better,[scikit-learn]18062:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]18062:3scikit-learn:0.23.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]18063:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]18063:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Convolution2D, tensorflow.keras.models.Sequential, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]18070:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Convolution2D, tensorflow.keras.models.Sequential, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]18070:5, 18070:7tensorflow:2.1.0, tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Convolution2D, tensorflow.keras.models.Sequential, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,[tensorflow]18070:6, 18070:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.Convolution2D, tensorflow.keras.models.Sequential, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]18070:9tensorflow:1.13.1Individual
tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.initializers.TruncatedNormal, tensorflow.initializers.constant, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.Conv2D,time variant better,score inconsistent[tensorflow]18072:6tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]18077:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,[tensorflow]18077:9tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,memory baseline better,[tensorflow]18080:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,memory variant better,score inconsistent[tensorflow]18080:6tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,time baseline better,[tensorflow]18080:7tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D,memory variant better,[tensorflow]18080:8tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.models.Sequential,memory baseline better,[tensorflow]18081:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.models.Sequential,time baseline better,[tensorflow]18081:7tensorflow:2.0.0Individual
sklearn.preprocessing.MinMaxScaler,memory baseline better,[scikit-learn]18086:8scikit-learn:1.0.1Individual
sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC,memory baseline better,[scikit-learn]18097:2scikit-learn:0.24.2Individual
sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC,time baseline better,memory baseline better,[scikit-learn]18097:3scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC,memory variant better,[scikit-learn]18097:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]18105:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18105:8tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.losses.SparseCategoricalCrossentropy,memory baseline better,[tensorflow]18106:5tensorflow:2.1.0Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time baseline better,[scikit-learn]18107:3, 18107:4scikit-learn:0.23.2, scikit-learn:0.22.1Individual
sklearn.preprocessing.StandardScaler, sklearn.svm.SVC, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,memory variant better,[scikit-learn]18107:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18108:6tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18114:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]18114:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,score inconsistent[tensorflow]18114:3tensorflow:2.3.1Individual
tensorflow.keras.callbacks.EarlyStopping, tensorflow.losses.Huber, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Nadam, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D,time baseline better,memory variant better,[tensorflow]18117:6tensorflow:2.0.0Individual
torch.nn.AvgPool2d, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.Linear, torch.nn.functional.cross_entropy, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.device,memory baseline better,[torch]18118:1torch:1.9.0Individual
torch.nn.AvgPool2d, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.Linear, torch.nn.functional.cross_entropy, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.device,time baseline better,score inconsistent[torch]18118:2torch:1.8.1Individual
torch.nn.AvgPool2d, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.optim.Adam, torch.nn.functional.relu, torch.nn.Linear, torch.nn.functional.cross_entropy, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d, torch.device,memory variant better,score inconsistent[torch]18118:3torch:1.7.1Individual
keras.layers.MaxPooling2D, keras.layers.Conv2D, keras.models.Model, keras.layers.core.Dense, keras.callbacks.ReduceLROnPlateau, keras.utils.to_categorical, keras.layers.core.Activation, keras.layers.core.Dropout, keras.optimizers.adam, keras.callbacks.EarlyStopping, keras.layers.Flatten, keras.layers.Input, keras.layers.normalization.BatchNormalization,memory baseline better,[keras]18119:9keras:2.3.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.optim.SGD, torch.nn.Conv2d, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.from_numpy, torch.max, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,[torch]18134:3, 18169:3torch:1.7.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18139:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]18139:4, 18139:6tensorflow:2.2.0, tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]18139:5, 18140:7, 18144:5, 18144:7tensorflow:2.1.0, tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,score inconsistent[tensorflow]18139:7tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory baseline better,[tensorflow]18140:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,[tensorflow]18140:6, 18144:9tensorflow:1.15.2, tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,score inconsistent[tensorflow]18144:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time variant better,[tensorflow]18145:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,memory variant better,[tensorflow]18145:6, 18145:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,memory variant better,score inconsistent[tensorflow]18145:9tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical,time variant better,memory variant better,[tensorflow]18155:1, 18155:2tensorflow:2.7.0, tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical,time baseline better,memory variant better,[tensorflow]18155:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical,time baseline better,memory baseline better,[tensorflow]18155:5tensorflow:2.1.0Individual
keras.layers.Dropout, keras.layers.MaxPooling2D, keras.models.Sequential, keras.utils.np_utils.to_categorical, keras.layers.Dense, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.callbacks.LearningRateScheduler, keras.optimizers.adam, keras.layers.Flatten,memory baseline better,[keras]18160:4keras:2.4.3Individual
tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.test.gpu_device_name, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]18170:2, 18170:5tensorflow:2.4.1Individual
tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.test.gpu_device_name, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]18170:4, 18170:7tensorflow:2.2.0Individual
tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.test.gpu_device_name, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory baseline better,score inconsistent[tensorflow]18170:8tensorflow:2.1.0Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.accuracy_score,memory baseline better,[scikit-learn]18175:2, 18175:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.accuracy_score,memory variant better,[scikit-learn]18175:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]18181:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,[tensorflow]18181:5tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18181:7, 18181:8tensorflow:2.2.0, tensorflow:2.1.0Individual
torch.nn.Relu, torch.nn.LogSoftmax, torch.argmax, torch.nn.BatchNorm2d, torch.tensor, torch.nn.Conv2d, torch.optim.Adam, torch.manual_seed, torch.nn.Linear, torch.nn.NLLLoss, torch.sum, torch.cuda.is_available, torch.cuda.manual_seed, torch.utils.data.random_split, torch.nn.AdaptiveAvgPool2d, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time variant better,memory baseline better,score inconsistent[torch]18184:1torch:1.9.0Individual
torch.nn.Relu, torch.nn.LogSoftmax, torch.argmax, torch.nn.BatchNorm2d, torch.tensor, torch.nn.Conv2d, torch.optim.Adam, torch.manual_seed, torch.nn.Linear, torch.nn.NLLLoss, torch.sum, torch.cuda.is_available, torch.cuda.manual_seed, torch.utils.data.random_split, torch.nn.AdaptiveAvgPool2d, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,memory variant better,score inconsistent[torch]18184:3torch:1.7.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.RMSprop, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18185:6tensorflow:2.0.0Individual
sklearn.preprocessing.StandardScaler, sklearn.decomposition.TruncatedSVD, sklearn.neighbors.KNeighborsClassifier, sklearn.metrics.accuracy_score,time baseline better,[scikit-learn]18187:1scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.decomposition.TruncatedSVD, sklearn.neighbors.KNeighborsClassifier, sklearn.metrics.accuracy_score,time baseline better,memory baseline better,[scikit-learn]18187:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.decomposition.TruncatedSVD, sklearn.neighbors.KNeighborsClassifier, sklearn.metrics.accuracy_score,memory baseline better,[scikit-learn]18187:3scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.decomposition.TruncatedSVD, sklearn.neighbors.KNeighborsClassifier, sklearn.metrics.accuracy_score,memory variant better,[scikit-learn]18187:7, 18187:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,time baseline better,memory variant better,score inconsistent[scikit-learn]18193:1, 18193:3scikit-learn:1.0.1, scikit-learn:0.23.2Individual
sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,memory variant better,score inconsistent[scikit-learn]18193:2scikit-learn:0.24.2Individual
sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]18193:4, 18193:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,time variant better,memory baseline better,score inconsistent[scikit-learn]18193:6scikit-learn:0.21.3Individual
sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,memory baseline better,score inconsistent[scikit-learn]18193:7, 18193:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Activation, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.argmax, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,score inconsistent[tensorflow]18200:3, 18200:4tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.backend.sigmoid, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Nadam, tensorflow.keras.utils.get_custom_objects, tensorflow.keras.layers.Activation, tensorflow.test.gpu_device_name, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D,memory baseline better,[tensorflow]18201:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]18202:1, 18202:2tensorflow:2.7.0, tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,[tensorflow]18202:3, 18202:4, 18202:5tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,[tensorflow]18202:7, 18202:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]18202:9tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18204:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]18204:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,score inconsistent[tensorflow]18204:3, 18204:4, 18204:9tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,[tensorflow]18204:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,score inconsistent[tensorflow]18204:7, 18204:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.backend.set_value, tensorflow.keras.backend.get_value, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]18206:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.backend.set_value, tensorflow.keras.backend.get_value, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18206:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.backend.set_value, tensorflow.keras.backend.get_value, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory baseline better,[tensorflow]18206:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.backend.set_value, tensorflow.keras.backend.get_value, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]18206:7, 18206:8tensorflow:1.15.2, tensorflow:1.14.0Individual
torch.optim.lr_scheduler.ReduceLROnPlateau, torch.nn.functional.leaky_relu, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.Linear, torch.no_grad, torch.nn.functional.dropout, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.log, torch.nn.LeakyReLU, torch.nn.MaxPool2d, torch.nn.Sequential,time baseline better,memory variant better,score inconsistent[torch]18210:1, 18210:2, 18210:3torch:1.9.0, torch:1.8.1, torch:1.7.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.cuda.current_device, torch.cuda.set_device, torch.nn.Conv2d, torch.optim.Adam,time baseline better,memory baseline better,score inconsistent[torch]18212:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.cuda.current_device, torch.cuda.set_device, torch.nn.Conv2d, torch.optim.Adam,time baseline better,score inconsistent[torch]18212:2torch:1.8.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.cuda.current_device, torch.cuda.set_device, torch.nn.Conv2d, torch.optim.Adam,time baseline better,memory variant better,[torch]18212:3torch:1.7.1Individual
torch.autograd.Variable, torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.optim.SGD, torch.utils.data.DataLoader, torch.from_numpy, torch.max, torch.utils.data.TensorDataset, torch.nn.Conv2d, torch.nn.MaxPool2d,time baseline better,[torch]18230:3torch:1.7.1Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,time variant better,score inconsistent[keras]18239:3keras:2.4.3Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,time variant better,[keras]18239:4keras:2.4.3Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,time baseline better,memory variant better,[keras]18239:7, 18244:8, 18244:10keras:2.3.1Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,time baseline better,memory variant better,score inconsistent[keras]18239:8, 18244:7, 18244:11, 18244:12keras:2.3.1Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,memory variant better,score inconsistent[keras]18239:10, 18239:11, 18239:12keras:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.GlobalAveragePooling2D, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,score inconsistent[tensorflow]18241:6tensorflow:2.0.0Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,time variant better,memory variant better,score inconsistent[keras]18244:3keras:2.4.3Individual
keras.layers.Dropout, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.layers.BatchNormalization, keras.layers.MaxPool2D, keras.optimizers.adam, keras.layers.Flatten,time variant better,memory variant better,[keras]18244:4keras:2.4.3Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]18259:2, 18259:3, 18259:8scikit-learn:1.0.1Individual
torch.nn.CrossEntropyLoss, torch.nn.functional.log_softmax, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.load, torch.nn.functional.relu, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d,memory baseline better,[torch]18260:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.functional.log_softmax, torch.utils.data.sampler.SubsetRandomSampler, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.load, torch.nn.functional.relu, torch.nn.Linear, torch.no_grad, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.Dropout, torch.max, torch.nn.MaxPool2d,memory variant better,[torch]18260:3torch:1.7.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,[tensorflow]18265:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,score inconsistent[tensorflow]18265:2, 18265:5tensorflow:2.4.1, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,[tensorflow]18265:3, 18265:4tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]18265:7, 18265:8, 18265:9tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.matmul, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.init.constant_, torch.nn.Linear, torch.no_grad, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool3d, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.MaxPool1d,memory baseline better,[torch]18268:1torch:1.9.0Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.matmul, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.init.constant_, torch.nn.Linear, torch.no_grad, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool3d, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.MaxPool1d,score inconsistent[torch]18268:2torch:1.8.1Individual
torch.nn.Relu, torch.nn.CrossEntropyLoss, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.matmul, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.init.constant_, torch.nn.Linear, torch.no_grad, torch.utils.data.DataLoader, torch.nn.Dropout, torch.nn.MaxPool3d, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.MaxPool1d,time baseline better,memory variant better,[torch]18268:3torch:1.7.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D,time variant better,score inconsistent[tensorflow]18271:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D,time variant better,memory baseline better,score inconsistent[tensorflow]18271:4, 18277:4, 18277:5tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D,time variant better,memory baseline better,[tensorflow]18271:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D,time variant better,memory variant better,score inconsistent[tensorflow]18271:7, 18271:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D,time variant better,[tensorflow]18277:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.Conv2D,time variant better,memory variant better,[tensorflow]18277:7, 18277:8, 18277:9tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]18287:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,score inconsistent[tensorflow]18287:4, 18287:7tensorflow:2.2.0, tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,[tensorflow]18287:5, 18287:8tensorflow:2.1.0, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,score inconsistent[tensorflow]18287:9tensorflow:1.13.1Individual
keras.layers.Dropout, keras.layers.MaxPooling2D, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.optimizers.RMSprop, keras.callbacks.LearningRateScheduler, keras.callbacks.EarlyStopping, keras.layers.Flatten, keras.layers.LeakyReLU, keras.layers.normalization.BatchNormalization,time variant better,memory baseline better,[keras]18288:3keras:2.4.3Individual
keras.layers.Dropout, keras.layers.MaxPooling2D, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.optimizers.RMSprop, keras.callbacks.LearningRateScheduler, keras.callbacks.EarlyStopping, keras.layers.Flatten, keras.layers.LeakyReLU, keras.layers.normalization.BatchNormalization,time variant better,score inconsistent[keras]18288:4keras:2.4.3Individual
keras.layers.Dropout, keras.layers.MaxPooling2D, keras.models.Sequential, keras.layers.Dense, keras.utils.to_categorical, keras.layers.Conv2D, keras.optimizers.RMSprop, keras.callbacks.LearningRateScheduler, keras.callbacks.EarlyStopping, keras.layers.Flatten, keras.layers.LeakyReLU, keras.layers.normalization.BatchNormalization,time baseline better,memory variant better,score inconsistent[keras]18288:7, 18288:8, 18288:10, 18288:11, 18288:12keras:2.3.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.relu, torch.nn.MaxPool2d, torch.device,time variant better,memory baseline better,score inconsistent[torch]18293:1torch:1.9.0Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.relu, torch.nn.MaxPool2d, torch.device,time variant better,score inconsistent[torch]18293:2torch:1.8.1Individual
torch.nn.CrossEntropyLoss, torch.nn.Linear, torch.no_grad, torch.optim.Adamax, torch.cuda.is_available, torch.save, torch.utils.data.DataLoader, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.relu, torch.nn.MaxPool2d, torch.device,memory variant better,[torch]18293:3torch:1.7.1Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time baseline better,memory baseline better,score inconsistent[scikit-learn]18305:1, 18305:2scikit-learn:1.0.1, scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,score inconsistent[scikit-learn]18305:3, 18305:6scikit-learn:0.23.2, scikit-learn:0.21.3Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time variant better,memory variant better,score inconsistent[scikit-learn]18305:4scikit-learn:0.22.1Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,memory variant better,score inconsistent[scikit-learn]18305:5scikit-learn:0.22Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.model_selection.train_test_split, sklearn.metrics.confusion_matrix,time variant better,memory baseline better,score inconsistent[scikit-learn]18305:7scikit-learn:0.20.3Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]18317:5tensorflow:2.1.0Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.multiclass.OneVsRestClassifier, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,[scikit-learn]18344:2scikit-learn:0.24.2Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.multiclass.OneVsRestClassifier, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory baseline better,[scikit-learn]18344:7scikit-learn:0.20.3Individual
sklearn.decomposition.PCA, sklearn.svm.SVC, sklearn.multiclass.OneVsRestClassifier, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory variant better,[scikit-learn]18344:8scikit-learn:0.19.2Individual
torch.nn.Relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.Linear, torch.no_grad, torch.cuda.empty_cache, torch.cuda.is_available, torch.utils.data.DataLoader, torch.log, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,memory baseline better,[torch]18355:1torch:1.9.0Individual
torch.nn.Relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.Linear, torch.no_grad, torch.cuda.empty_cache, torch.cuda.is_available, torch.utils.data.DataLoader, torch.log, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,score inconsistent[torch]18355:2torch:1.8.1Individual
torch.nn.Relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.nn.Linear, torch.no_grad, torch.cuda.empty_cache, torch.cuda.is_available, torch.utils.data.DataLoader, torch.log, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,memory variant better,[torch]18355:3torch:1.7.1Individual
torch.nn.Relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.randperm, torch.nn.Linear, torch.no_grad, torch.cuda.empty_cache, torch.cuda.is_available, torch.utils.data.DataLoader, torch.log, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,memory baseline better,score inconsistent[torch]18359:1torch:1.9.0Individual
torch.nn.Relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.randperm, torch.nn.Linear, torch.no_grad, torch.cuda.empty_cache, torch.cuda.is_available, torch.utils.data.DataLoader, torch.log, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,score inconsistent[torch]18359:2torch:1.8.1Individual
torch.nn.Relu, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.functional.softmax, torch.optim.Adam, torch.randperm, torch.nn.Linear, torch.no_grad, torch.cuda.empty_cache, torch.cuda.is_available, torch.utils.data.DataLoader, torch.log, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device,time baseline better,memory variant better,score inconsistent[torch]18359:3torch:1.7.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]18363:4tensorflow:2.2.0Individual
torch.nn.Linear, torch.nn.functional.cross_entropy, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.argmax, torch.tensor, torch.nn.Conv2d, torch.optim.Adam,time baseline better,[torch]18373:3torch:1.7.1Individual
torch.nn.functional.log_softmax, torch.nn.LogSoftmax, torch.nn.functional.max_pool2d, torch.nn.BatchNorm2d, torch.nn.functional.nll_loss, torch.optim.Adam, torch.manual_seed, torch.stack, torch.nn.AdaptiveAvgPool2d, torch.save, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.Relu, torch.LongTensor, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.flatten, torch.tensor, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Linear, torch.utils.data.to, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.utils.data.iterrows, torch.nn.Dropout, torch.nn.LeakyReLU,time baseline better,memory variant better,[torch]18389:2torch:1.8.1Individual
torch.nn.functional.log_softmax, torch.nn.LogSoftmax, torch.nn.functional.max_pool2d, torch.nn.BatchNorm2d, torch.nn.functional.nll_loss, torch.optim.Adam, torch.manual_seed, torch.stack, torch.nn.AdaptiveAvgPool2d, torch.save, torch.nn.MaxPool2d, torch.nn.Sequential, torch.device, torch.nn.Relu, torch.LongTensor, torch.optim.lr_scheduler.StepLR, torch.nn.BatchNorm1d, torch.flatten, torch.tensor, torch.nn.Conv2d, torch.load, torch.nn.functional.relu, torch.nn.Linear, torch.utils.data.to, torch.no_grad, torch.cuda.is_available, torch.utils.data.DataLoader, torch.utils.data.iterrows, torch.nn.Dropout, torch.nn.LeakyReLU,time baseline better,memory baseline better,[torch]18389:3torch:1.7.1Individual
sklearn.feature_extraction.text.CountVectorizer,memory baseline better,[scikit-learn]18520:2, 18520:3, 18633:2, 20546:2scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer,memory variant better,[scikit-learn]18520:8, 18633:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB,time variant better,[scikit-learn]18541:1scikit-learn:1.0.1Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB,memory baseline better,[scikit-learn]18541:2, 18541:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB,time variant better,memory variant better,[scikit-learn]18541:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]18550:2, 18550:3, 18614:2, 18614:3, 18638:2, 18638:3, 18760:2, 18760:3, 18802:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]18550:5, 18550:8, 18760:1scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:1.0.1Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]18614:6, 18638:5scikit-learn:0.21.3, scikit-learn:0.22Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.train_test_split,time variant better,memory variant better,[scikit-learn]18614:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer,time variant better,memory baseline better,[scikit-learn]18633:3, 20546:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer,time variant better,[scikit-learn]18633:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]18638:8, 18760:8, 18802:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression,time baseline better,memory baseline better,[scikit-learn]18642:2, 22234:2scikit-learn:0.24.2Individual
sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]18642:3, 22234:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.train_test_split,time baseline better,memory baseline better,[scikit-learn]18802:2scikit-learn:0.24.2Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,memory variant better,[tensorflow]19458:1tensorflow:2.7.0Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]19458:3scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]19458:4, 24614:3, 24614:7, 25080:2scikit-learn:1.0.1, scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time baseline better,score inconsistent[scikit-learn]19458:6, 19458:7, 19458:8, 19599:6scikit-learn:1.0.1Individual
category_encoders.TargetEncoder, category_encoders.CatBoostEncoder, category_encoders.WOEEncoder,time variant better,memory variant better,score inconsistent[category_encoders]19459:2, 19459:3category_encoders:2.3.0Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]19459:2, 19459:3scikit-learn:0.21.3, scikit-learn:0.22Individual
category_encoders.TargetEncoder, category_encoders.CatBoostEncoder, category_encoders.WOEEncoder,time variant better,[category_encoders]19459:4category_encoders:2.3.0Individual
category_encoders.TargetEncoder, category_encoders.CatBoostEncoder, category_encoders.WOEEncoder,time variant better,score inconsistent[category_encoders]19459:5category_encoders:1.3.0Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,memory baseline better,score inconsistent[scikit-learn]19459:5, 19459:6scikit-learn:0.23.2, scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.impute.SimpleImputer, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.model_selection.cross_val_predict, sklearn.model_selection.cross_val_score,memory baseline better,score inconsistent[scikit-learn]19466:2scikit-learn:1.0.1Individual
sklearn.model_selection.train_test_split, sklearn.preprocessing.OrdinalEncoder, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]19486:4, 19486:5scikit-learn:1.0.1Individual
sklearn.model_selection.train_test_split, sklearn.preprocessing.OrdinalEncoder, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]19486:7scikit-learn:1.0.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]19503:6, 19503:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]19503:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,time variant better,[tensorflow]19504:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,score inconsistent[tensorflow]19504:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,time variant better,score inconsistent[tensorflow]19504:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,time variant better,memory variant better,score inconsistent[tensorflow]19504:4, 19504:6tensorflow:2.2.0, tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,memory baseline better,score inconsistent[tensorflow]19504:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,time baseline better,memory variant better,score inconsistent[tensorflow]19504:7, 19504:9tensorflow:1.15.2, tensorflow:1.13.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.backend.clear_session,time baseline better,memory variant better,[tensorflow]19504:8tensorflow:1.14.0Individual
catboost.cv, catboost.Pool, catboost.CatBoostRegressor,memory baseline better,[catboost]19505:1, 19505:2catboost:1.0.3, catboost:0.25.1Individual
catboost.cv, catboost.Pool, catboost.CatBoostRegressor,score inconsistent[catboost]19505:6, 19505:7catboost:0.20.2, catboost:0.17.5Individual
catboost.cv, catboost.Pool, catboost.CatBoostRegressor,time baseline better,[catboost]19505:8catboost:0.16.5Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingClassifier, sklearn.tree.DecisionTreeClassifier,time baseline better,[scikit-learn]19507:1, 19507:3, 19507:4scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingClassifier, sklearn.tree.DecisionTreeClassifier,time baseline better,memory baseline better,[scikit-learn]19507:6scikit-learn:0.21.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingClassifier, sklearn.tree.DecisionTreeClassifier,time variant better,memory baseline better,[scikit-learn]19507:7, 19507:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time baseline better,score inconsistent[scikit-learn]19517:2scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]19517:5scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,time variant better,memory baseline better,[scikit-learn]19517:6scikit-learn:0.24.2Individual
lightgbm.LGBMClassifier,time baseline better,[lightgbm]19546:5, 19546:7, 19848:6, 24895:5, 25054:3, 25078:5, 25121:4, 25313:6lightgbm:2.3.1, lightgbm:2.1.2, lightgbm:2.2.3, lightgbm:3.1.1, lightgbm:3.0.0Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.model_selection.StratifiedKFold,memory variant better,score inconsistent[scikit-learn]19550:2scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.naive_bayes.CategoricalNB, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]19553:4scikit-learn:0.22.1Individual
sklearn.metrics.roc_auc_score, sklearn.naive_bayes.CategoricalNB, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]19553:5scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.naive_bayes.CategoricalNB, sklearn.model_selection.train_test_split,time baseline better,memory baseline better,[scikit-learn]19553:6scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory baseline better,score inconsistent[scikit-learn]19560:5scikit-learn:0.23.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]19560:6scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]19560:7scikit-learn:1.0.1Individual
category_encoders.TargetEncoder,time variant better,memory variant better,score inconsistent[category_encoders]19567:2, 19567:3, 19567:4category_encoders:2.3.0Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression,time baseline better,[scikit-learn]19570:2scikit-learn:0.24.2Individual
lightgbm.LGBMClassifier,memory baseline better,[lightgbm]19575:1, 25078:2, 25121:7lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:2.1.2Individual
category_encoders.TargetEncoder,time baseline better,[category_encoders]19581:2, 19581:5, 19584:2, 19598:5, 19609:4category_encoders:2.3.0, category_encoders:1.3.0, category_encoders:2.2.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]19598:2scikit-learn:0.21.3Individual
category_encoders.TargetEncoder,time baseline better,memory variant better,[category_encoders]19598:3category_encoders:2.3.0Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]19598:5, 19598:6scikit-learn:0.23.2, scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]19599:4scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory variant better,score inconsistent[scikit-learn]19599:7scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time variant better,memory baseline better,score inconsistent[scikit-learn]19599:8scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.confusion_matrix, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve,score inconsistent[scikit-learn]19602:3, 19602:4, 19602:5, 19602:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.confusion_matrix, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve,time baseline better,score inconsistent[scikit-learn]19602:6scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.confusion_matrix, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve,memory baseline better,score inconsistent[scikit-learn]19602:8scikit-learn:0.19.2Individual
sklearn.ensemble.GradientBoostingClassifier, sklearn.metrics.confusion_matrix, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve,memory variant better,[scikit-learn]19604:1, 19604:3, 19604:4, 19604:5scikit-learn:1.0.1Individual
sklearn.ensemble.GradientBoostingClassifier, sklearn.metrics.confusion_matrix, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve,time baseline better,memory variant better,[scikit-learn]19604:2scikit-learn:1.0.1Individual
sklearn.ensemble.GradientBoostingClassifier, sklearn.metrics.confusion_matrix, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve,time variant better,memory baseline better,[scikit-learn]19604:6, 19604:7, 19604:8scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression,time variant better,memory baseline better,score inconsistent[scikit-learn]19606:7scikit-learn:0.20.3Individual
sklearn.linear_model.LogisticRegression,time variant better,score inconsistent[scikit-learn]19606:8scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,score inconsistent[scikit-learn]19607:2scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]19617:2, 19617:3scikit-learn:1.0.1Individual
tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.Reshape, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.py_function, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.SpatialDropout1D, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.concatenate,time variant better,memory variant better,[tensorflow]19617:2, 19617:4tensorflow:2.4.1, tensorflow:2.2.0Individual
sklearn.ensemble.RandomForestClassifier, sklearn.tree.DecisionTreeClassifier,memory baseline better,[scikit-learn]19619:2, 19619:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.tree.DecisionTreeClassifier,time variant better,[scikit-learn]19619:6scikit-learn:0.21.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory baseline better,[scikit-learn]19623:2, 19623:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,memory variant better,[scikit-learn]19623:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time variant better,[scikit-learn]19625:1, 19625:5, 19625:7scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,memory baseline better,[scikit-learn]19625:2, 19625:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time variant better,memory variant better,[scikit-learn]19625:6, 19625:8scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,score inconsistent[scikit-learn]19630:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,time baseline better,score inconsistent[scikit-learn]19630:7, 20697:7scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,time baseline better,memory variant better,score inconsistent[scikit-learn]19630:8, 20697:8scikit-learn:0.19.2Individual
sklearn.linear_model.RidgeClassifierCV, sklearn.model_selection.GridSearchCV, sklearn.compose.ColumnTransformer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,memory variant better,score inconsistent[scikit-learn]19634:7scikit-learn:0.20.3Individual
sklearn.metrics.precision_score, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.recall_score, sklearn.metrics.confusion_matrix, sklearn.naive_bayes.ComplementNB,time variant better,memory variant better,score inconsistent[scikit-learn]19635:1, 19635:2, 19750:1, 19753:1, 19753:2scikit-learn:0.20.3, scikit-learn:0.21.3Individual
sklearn.metrics.precision_score, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.recall_score, sklearn.metrics.confusion_matrix, sklearn.naive_bayes.ComplementNB,time baseline better,memory variant better,score inconsistent[scikit-learn]19635:3, 19750:3, 19750:4, 19753:3, 19753:4scikit-learn:0.22, scikit-learn:0.22.1Individual
sklearn.metrics.precision_score, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.recall_score, sklearn.metrics.confusion_matrix, sklearn.naive_bayes.ComplementNB,memory variant better,score inconsistent[scikit-learn]19635:4, 19750:2scikit-learn:0.22.1, scikit-learn:0.21.3Individual
sklearn.metrics.precision_score, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.recall_score, sklearn.metrics.confusion_matrix, sklearn.naive_bayes.ComplementNB,time baseline better,memory baseline better,score inconsistent[scikit-learn]19635:5, 19750:6, 19753:5, 19753:6scikit-learn:0.23.2, scikit-learn:0.24.2Individual
sklearn.metrics.precision_score, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.recall_score, sklearn.metrics.confusion_matrix, sklearn.naive_bayes.ComplementNB,memory baseline better,score inconsistent[scikit-learn]19635:6, 19750:5scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.precision_score, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.recall_score, sklearn.metrics.confusion_matrix, sklearn.naive_bayes.ComplementNB,time baseline better,score inconsistent[scikit-learn]19635:7, 19750:7, 19753:7scikit-learn:1.0.1Individual
sklearn.decomposition.PCA,memory baseline better,[scikit-learn]19640:2, 19640:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression,memory baseline better,[scikit-learn]19641:2, 19641:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression,time baseline better,[scikit-learn]19641:7scikit-learn:0.20.3Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression,time variant better,memory variant better,[scikit-learn]19641:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report,score inconsistent[scikit-learn]19642:1, 19642:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report,time baseline better,memory baseline better,score inconsistent[scikit-learn]19642:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report,memory baseline better,score inconsistent[scikit-learn]19642:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report,memory variant better,score inconsistent[scikit-learn]19642:4, 19642:6scikit-learn:0.22.1, scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report,time variant better,memory variant better,score inconsistent[scikit-learn]19642:5, 19642:8scikit-learn:0.22, scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.plot_confusion_matrix, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.tree.DecisionTreeClassifier,time baseline better,memory baseline better,[scikit-learn]19647:3scikit-learn:0.23.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.plot_confusion_matrix, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.tree.DecisionTreeClassifier,memory variant better,[scikit-learn]19647:4, 19647:5scikit-learn:0.22.1, scikit-learn:0.22Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.reshape, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,memory variant better,[tensorflow]19659:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.reshape, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,memory baseline better,[tensorflow]19659:6tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.reshape, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,score inconsistent[tensorflow]19659:8, 19660:6tensorflow:2.0.0, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.reshape, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout,time variant better,memory variant better,[tensorflow]19660:4tensorflow:2.2.0Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time baseline better,score inconsistent[scikit-learn]19676:1, 19676:4scikit-learn:1.0.1, scikit-learn:0.22.1Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time variant better,memory baseline better,score inconsistent[scikit-learn]19676:2, 19676:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,score inconsistent[scikit-learn]19676:5scikit-learn:0.22Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time variant better,memory variant better,score inconsistent[scikit-learn]19676:6scikit-learn:0.21.3Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,time variant better,score inconsistent[scikit-learn]19676:7scikit-learn:0.20.3Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.classification_report,memory variant better,score inconsistent[scikit-learn]19676:8scikit-learn:0.19.2Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.naive_bayes.ComplementNB,memory baseline better,[scikit-learn]19688:2, 19688:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.naive_bayes.ComplementNB,time baseline better,[scikit-learn]19688:4scikit-learn:0.22.1Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.naive_bayes.ComplementNB,score inconsistent[scikit-learn]19688:6scikit-learn:0.21.3Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.naive_bayes.ComplementNB,time variant better,memory variant better,score inconsistent[scikit-learn]19688:7scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression,time baseline better,memory baseline better,[scikit-learn]19689:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression,memory baseline better,[scikit-learn]19689:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression,time baseline better,[scikit-learn]19689:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.naive_bayes.GaussianNB, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,time variant better,[scikit-learn]19706:3, 19706:5scikit-learn:0.23.2, scikit-learn:0.22Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.naive_bayes.GaussianNB, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,time baseline better,[scikit-learn]19706:4scikit-learn:0.22.1Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.naive_bayes.GaussianNB, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,score inconsistent[scikit-learn]19706:6, 19706:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.naive_bayes.GaussianNB, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,memory variant better,score inconsistent[scikit-learn]19706:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.auc, sklearn.model_selection.train_test_split, sklearn.metrics.plot_roc_curve, sklearn.naive_bayes.ComplementNB, sklearn.metrics.roc_curve,time variant better,[scikit-learn]19713:5scikit-learn:0.22Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,score inconsistent[scikit-learn]19736:1scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,memory baseline better,score inconsistent[scikit-learn]19736:2, 19736:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,memory variant better,score inconsistent[scikit-learn]19736:4, 19736:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time variant better,memory variant better,score inconsistent[scikit-learn]19736:6, 19736:8scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time variant better,score inconsistent[scikit-learn]19736:7scikit-learn:0.20.3Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint,time baseline better,memory baseline better,score inconsistent[tensorflow]19738:2tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint,time variant better,score inconsistent[tensorflow]19738:3tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint,memory baseline better,[tensorflow]19738:4, 19738:5tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint,score inconsistent[tensorflow]19738:9, 19738:12, 19738:13, 19738:26, 19738:29tensorflow:2.4.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint,memory variant better,[tensorflow]19738:10tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint,time variant better,memory variant better,[tensorflow]19738:11, 19738:19tensorflow:2.4.1, tensorflow:2.3.1Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC, sklearn.model_selection.cross_val_score, sklearn.metrics.confusion_matrix,memory baseline better,[scikit-learn]19746:2, 19746:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.svm.LinearSVC, sklearn.model_selection.cross_val_score, sklearn.metrics.confusion_matrix,time variant better,[scikit-learn]19746:8scikit-learn:0.19.2Individual
sklearn.metrics.precision_recall_fscore_support, sklearn.pipeline.Pipeline, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,time variant better,[scikit-learn]19751:3scikit-learn:0.23.2Individual
sklearn.metrics.precision_recall_fscore_support, sklearn.pipeline.Pipeline, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,[scikit-learn]19751:8scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.svm.SVC, sklearn.feature_extraction.text.CountVectorizer, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.plot_roc_curve,time variant better,[scikit-learn]19755:4scikit-learn:0.22.1Individual
sklearn.model_selection.cross_validate, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.naive_bayes.ComplementNB,memory baseline better,[scikit-learn]19757:2scikit-learn:0.24.2Individual
sklearn.model_selection.cross_validate, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report, sklearn.naive_bayes.ComplementNB,time baseline better,[scikit-learn]19757:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB,memory baseline better,[scikit-learn]19766:2, 19766:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB,time variant better,memory variant better,[scikit-learn]19766:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,score inconsistent[scikit-learn]19772:1, 19772:4, 19772:5, 19772:7scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory baseline better,score inconsistent[scikit-learn]19772:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time baseline better,memory baseline better,score inconsistent[scikit-learn]19772:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,time variant better,score inconsistent[scikit-learn]19772:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.classification_report, sklearn.metrics.confusion_matrix,memory variant better,score inconsistent[scikit-learn]19772:8scikit-learn:0.19.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.model_selection.StratifiedKFold,memory variant better,[scikit-learn]19774:2, 19774:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.model_selection.StratifiedKFold,time baseline better,[scikit-learn]19774:4, 19774:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.model_selection.StratifiedKFold,time variant better,[scikit-learn]19774:8scikit-learn:0.19.2Individual
sklearn.neural_network.MLPClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]19796:6scikit-learn:0.21.3Individual
sklearn.neural_network.MLPClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory baseline better,score inconsistent[scikit-learn]19796:7scikit-learn:0.20.3Individual
sklearn.neural_network.MLPClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time variant better,memory baseline better,score inconsistent[scikit-learn]19796:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.preprocessing.text.one_hot, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential,time baseline better,[tensorflow]19799:4tensorflow:2.2.0Individual
transformers.Trainer, transformers.trainer_utils.set_seed, transformers.AutoTokenizer.from_pretrained, transformers.AutoModelForSequenceClassification.from_pretrained, transformers.TrainingArguments,score inconsistent[transformers]19857:10transformers:4.5.1Individual
tensorflow.keras.layers.Dense, tensorflow.config.experimental.set_memory_growth, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.config.experimental.list_physical_devices, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential,score inconsistent[tensorflow]19987:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.config.experimental.set_memory_growth, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.config.experimental.list_physical_devices, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential,time baseline better,memory variant better,score inconsistent[tensorflow]19987:4, 19987:5tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GRU,time variant better,memory variant better,[tensorflow]19991:3, 19991:8tensorflow:2.3.1, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GRU,memory variant better,[tensorflow]19991:4, 19991:7tensorflow:2.2.0, tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GRU,time baseline better,memory variant better,score inconsistent[tensorflow]19991:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,time baseline better,score inconsistent[tensorflow]19999:1, 19999:5, 19999:6tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,score inconsistent[tensorflow]19999:2, 19999:3, 19999:4tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,time variant better,memory baseline better,score inconsistent[tensorflow]19999:7, 19999:15, 19999:16, 19999:23, 19999:24, 19999:31, 19999:32tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,memory baseline better,score inconsistent[tensorflow]19999:8tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,memory variant better,score inconsistent[tensorflow]19999:9, 19999:10, 19999:17, 19999:18, 19999:26tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,time variant better,memory variant better,score inconsistent[tensorflow]19999:11, 19999:13, 19999:14, 19999:19, 19999:20, 19999:21, 19999:22, 19999:30tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,time variant better,score inconsistent[tensorflow]19999:12tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.concatenate,time baseline better,memory variant better,score inconsistent[tensorflow]19999:25, 19999:27, 19999:28, 19999:29tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,memory baseline better,[tensorflow]20040:2tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,memory baseline better,[tensorflow]20040:3tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,memory baseline better,score inconsistent[tensorflow]20040:4tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,memory baseline better,score inconsistent[tensorflow]20040:5tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,score inconsistent[tensorflow]20040:9, 20040:10, 20040:11, 20040:12, 20040:20, 20040:21tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,time variant better,score inconsistent[tensorflow]20040:25, 20040:26, 20040:29tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.BinaryCrossentropy,time variant better,[tensorflow]20040:28tensorflow:2.2.0Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,memory baseline better,[scikit-learn]20041:1scikit-learn:1.0.1Individual
xgboost.XGBClassifier,time baseline better,memory baseline better,[xgboost]20041:1, 20132:2, 24572:4, 24572:6xgboost:1.5.1, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.0.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,score inconsistent[scikit-learn]20041:2, 20041:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,score inconsistent[scikit-learn]20041:4scikit-learn:0.22.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GlobalAveragePooling1D,score inconsistent[tensorflow]20045:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Sequential,time variant better,memory variant better,[tensorflow]20049:2, 20049:3, 20049:4tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Embedding, tensorflow.keras.layers.Lambda, tensorflow.keras.backend.mean, tensorflow.keras.Input, tensorflow.keras.models.Sequential,memory baseline better,[tensorflow]20055:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Embedding, tensorflow.keras.layers.Lambda, tensorflow.keras.backend.mean, tensorflow.keras.Input, tensorflow.keras.models.Sequential,memory variant better,score inconsistent[tensorflow]20055:7, 20055:8tensorflow:1.15.2, tensorflow:1.14.0Individual
sklearn.svm.SVC, sklearn.model_selection.cross_validate,memory baseline better,[scikit-learn]20059:2, 20059:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.svm.SVC, sklearn.model_selection.cross_validate,time baseline better,score inconsistent[scikit-learn]20059:6, 20059:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.svm.SVC, sklearn.model_selection.cross_validate,time baseline better,memory variant better,score inconsistent[scikit-learn]20059:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,time baseline better,memory baseline better,score inconsistent[tensorflow]20061:2tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,time variant better,memory baseline better,[tensorflow]20061:3tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,memory baseline better,score inconsistent[tensorflow]20061:4tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,memory baseline better,[tensorflow]20061:5tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,score inconsistent[tensorflow]20061:10, 20061:12, 20061:21tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,time variant better,[tensorflow]20061:11tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,memory variant better,[tensorflow]20061:17, 20061:29tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,memory variant better,score inconsistent[tensorflow]20061:18tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,time variant better,score inconsistent[tensorflow]20061:19tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model,time baseline better,memory variant better,[tensorflow]20061:25, 20061:26tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.losses.BinaryCrossentropy,time variant better,[tensorflow]20063:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.losses.BinaryCrossentropy,memory variant better,score inconsistent[tensorflow]20063:7tensorflow:1.15.2Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.model_selection.cross_validate, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,memory baseline better,[scikit-learn]20090:2scikit-learn:0.24.2Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.model_selection.cross_validate, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,time variant better,memory baseline better,[scikit-learn]20090:3scikit-learn:0.23.2Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.model_selection.cross_validate, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,time variant better,[scikit-learn]20090:5scikit-learn:0.22Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.model_selection.cross_validate, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,score inconsistent[scikit-learn]20090:6, 20090:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.ensemble.VotingClassifier, sklearn.svm.SVC, sklearn.model_selection.cross_validate, sklearn.naive_bayes.GaussianNB, sklearn.neighbors.KNeighborsClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,time baseline better,memory variant better,score inconsistent[scikit-learn]20090:8scikit-learn:0.19.2Individual
tensorflow.distribute.experimental.TPUStrategy, tensorflow.keras.optimizers.Adam, tensorflow.tpu.experimental.initialize_tpu_system, tensorflow.distribute.get_strategy, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.distribute.cluster_resolver.TPUClusterResolver, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.concat, tensorflow.ragged.constant, tensorflow.zeros_like, tensorflow.config.experimental_connect_to_cluster, tensorflow.ones_like,time variant better,[tensorflow]20119:18, 20119:19tensorflow:2.3.1Individual
tensorflow.distribute.experimental.TPUStrategy, tensorflow.keras.optimizers.Adam, tensorflow.tpu.experimental.initialize_tpu_system, tensorflow.distribute.get_strategy, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.distribute.cluster_resolver.TPUClusterResolver, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.concat, tensorflow.ragged.constant, tensorflow.zeros_like, tensorflow.config.experimental_connect_to_cluster, tensorflow.ones_like,memory baseline better,score inconsistent[tensorflow]20119:20tensorflow:2.3.1Individual
tensorflow.distribute.experimental.TPUStrategy, tensorflow.keras.optimizers.Adam, tensorflow.tpu.experimental.initialize_tpu_system, tensorflow.distribute.get_strategy, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.distribute.cluster_resolver.TPUClusterResolver, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.concat, tensorflow.ragged.constant, tensorflow.zeros_like, tensorflow.config.experimental_connect_to_cluster, tensorflow.ones_like,time variant better,memory baseline better,score inconsistent[tensorflow]20119:21tensorflow:2.3.1Individual
tensorflow.distribute.experimental.TPUStrategy, tensorflow.keras.optimizers.Adam, tensorflow.tpu.experimental.initialize_tpu_system, tensorflow.distribute.get_strategy, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.distribute.cluster_resolver.TPUClusterResolver, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.concat, tensorflow.ragged.constant, tensorflow.zeros_like, tensorflow.config.experimental_connect_to_cluster, tensorflow.ones_like,memory variant better,score inconsistent[tensorflow]20119:25tensorflow:2.2.0Individual
tensorflow.distribute.experimental.TPUStrategy, tensorflow.keras.optimizers.Adam, tensorflow.tpu.experimental.initialize_tpu_system, tensorflow.distribute.get_strategy, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.distribute.cluster_resolver.TPUClusterResolver, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.concat, tensorflow.ragged.constant, tensorflow.zeros_like, tensorflow.config.experimental_connect_to_cluster, tensorflow.ones_like,time variant better,memory variant better,[tensorflow]20119:26tensorflow:2.2.0Individual
tensorflow.distribute.experimental.TPUStrategy, tensorflow.keras.optimizers.Adam, tensorflow.tpu.experimental.initialize_tpu_system, tensorflow.distribute.get_strategy, tensorflow.keras.Input, tensorflow.keras.callbacks.EarlyStopping, tensorflow.distribute.cluster_resolver.TPUClusterResolver, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.concat, tensorflow.ragged.constant, tensorflow.zeros_like, tensorflow.config.experimental_connect_to_cluster, tensorflow.ones_like,time variant better,score inconsistent[tensorflow]20119:29tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.GlobalMaxPool1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GRU,time baseline better,memory variant better,[tensorflow]20131:7tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Bidirectional, tensorflow.keras.layers.GlobalMaxPool1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GRU,time baseline better,score inconsistent[tensorflow]20131:8tensorflow:1.14.0Individual
catboost.CatBoostClassifier,memory variant better,[catboost]20177:10, 20177:11catboost:0.12.2, catboost:0.10.3Individual
tensorflow.keras.layers.Dense, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time baseline better,[tensorflow]20195:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.regularizers.l2, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.losses.BinaryCrossentropy,time variant better,[tensorflow]20195:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential,memory baseline better,score inconsistent[tensorflow]20266:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential,score inconsistent[tensorflow]20266:2, 20266:3, 20266:5, 20266:6tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.Embedding, tensorflow.keras.Sequential,memory variant better,score inconsistent[tensorflow]20266:4, 20266:7tensorflow:2.2.0Individual
sklearn.linear_model.SGDClassifier, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split,time baseline better,memory baseline better,[scikit-learn]20298:2scikit-learn:0.24.2Individual
sklearn.linear_model.SGDClassifier, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]20298:3scikit-learn:0.23.2Individual
sklearn.linear_model.SGDClassifier, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]20298:4scikit-learn:0.22.1Individual
sklearn.linear_model.SGDClassifier, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]20298:7scikit-learn:0.20.3Individual
sklearn.linear_model.SGDClassifier, sklearn.metrics.f1_score, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]20298:8scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.metrics.plot_confusion_matrix,time baseline better,[scikit-learn]20306:2scikit-learn:0.24.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer,memory variant better,[tensorflow]20346:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer,time baseline better,memory variant better,[tensorflow]20346:3, 20346:4tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer,time baseline better,memory variant better,score inconsistent[tensorflow]20346:5tensorflow:2.1.0Individual
lightgbm.Dataset, lightgbm.plot_metric, lightgbm.train,time baseline better,[lightgbm]20356:5lightgbm:2.3.1Individual
lightgbm.Dataset, lightgbm.plot_metric, lightgbm.train,memory variant better,[lightgbm]20356:6lightgbm:2.2.3Individual
lightgbm.Dataset, lightgbm.plot_metric, lightgbm.train,time variant better,memory variant better,[lightgbm]20356:7lightgbm:2.1.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.GlobalMaxPool1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer,time variant better,score inconsistent[tensorflow]20364:2, 20364:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.GlobalMaxPool1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer,memory variant better,[tensorflow]20364:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.GlobalMaxPool1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer,memory variant better,score inconsistent[tensorflow]20364:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.LSTM, tensorflow.keras.layers.GlobalMaxPool1D, tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.preprocessing.text.Tokenizer,time baseline better,memory variant better,[tensorflow]20364:7, 20364:8tensorflow:1.15.2, tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Embedding, tensorflow.keras.layers.SimpleRNN, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time variant better,memory variant better,score inconsistent[tensorflow]20383:2, 20383:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Embedding, tensorflow.keras.layers.SimpleRNN, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,score inconsistent[tensorflow]20383:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Embedding, tensorflow.keras.layers.SimpleRNN, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time baseline better,[tensorflow]20383:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.concatenate,time baseline better,memory variant better,[tensorflow]20393:6tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.concatenate,memory baseline better,score inconsistent[tensorflow]20393:29tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.layers.concatenate,score inconsistent[tensorflow]20393:30tensorflow:2.2.0Individual
xgboost.XGBRegressor,time variant better,[xgboost]20405:6, 24017:7, 24096:6, 24354:5, 25012:6, 25806:5, 22249:4, 22249:6xgboost:1.0.2, xgboost:0.90, xgboost:1.1.1, xgboost:1.2.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,time baseline better,[tensorflow]20513:3tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,memory baseline better,[tensorflow]20513:7, 20513:8tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,memory variant better,score inconsistent[tensorflow]20513:9, 20513:10, 20513:25, 20513:30tensorflow:2.4.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,time baseline better,memory variant better,score inconsistent[tensorflow]20513:11, 20513:17, 20513:18, 20513:19, 20513:26, 20513:28, 20513:29tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,time variant better,memory variant better,score inconsistent[tensorflow]20513:12, 20513:13, 20513:14, 20513:20, 20513:21, 20513:22tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,time variant better,memory baseline better,score inconsistent[tensorflow]20513:15, 20513:23tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,time baseline better,memory baseline better,score inconsistent[tensorflow]20513:16tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Input, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout,memory baseline better,score inconsistent[tensorflow]20513:24, 20513:31, 20513:32tensorflow:2.3.1, tensorflow:2.2.0Individual
sklearn.feature_extraction.text.CountVectorizer,time baseline better,[scikit-learn]20546:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GlobalAveragePooling1D,time variant better,[tensorflow]20557:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GlobalAveragePooling1D,time variant better,memory variant better,[tensorflow]20557:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GlobalAveragePooling1D,memory variant better,[tensorflow]20557:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GlobalAveragePooling1D,memory variant better,score inconsistent[tensorflow]20557:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Embedding, tensorflow.keras.preprocessing.sequence.pad_sequences, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.preprocessing.text.Tokenizer, tensorflow.keras.layers.GlobalAveragePooling1D,time variant better,memory variant better,score inconsistent[tensorflow]20557:7, 20557:8tensorflow:1.15.2, tensorflow:1.14.0Individual
sklearn.naive_bayes.BernoulliNB, sklearn.naive_bayes.MultinomialNB,memory baseline better,[scikit-learn]20601:2, 20601:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.naive_bayes.BernoulliNB, sklearn.naive_bayes.MultinomialNB,time baseline better,[scikit-learn]20601:4scikit-learn:0.22.1Individual
sklearn.naive_bayes.BernoulliNB, sklearn.naive_bayes.MultinomialNB,time variant better,[scikit-learn]20601:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.make_scorer, sklearn.model_selection.GridSearchCV, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.ExtraTreesClassifier,time variant better,[scikit-learn]20612:1scikit-learn:1.0.1Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.make_scorer, sklearn.model_selection.GridSearchCV, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.ExtraTreesClassifier,time variant better,memory baseline better,[scikit-learn]20612:2, 20612:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.make_scorer, sklearn.model_selection.GridSearchCV, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.ExtraTreesClassifier,time variant better,memory variant better,[scikit-learn]20612:4, 20612:5, 20612:6scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.make_scorer, sklearn.model_selection.GridSearchCV, sklearn.feature_extraction.text.TfidfTransformer, sklearn.metrics.f1_score, sklearn.pipeline.Pipeline, sklearn.model_selection.train_test_split, sklearn.ensemble.ExtraTreesClassifier,time baseline better,memory variant better,[scikit-learn]20612:7, 20612:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,score inconsistent[scikit-learn]20614:1, 20614:6, 20614:7scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,score inconsistent[scikit-learn]20614:2, 20614:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,score inconsistent[scikit-learn]20614:4, 20614:5, 20614:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,score inconsistent[scikit-learn]20617:1, 20628:1, 20628:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,time baseline better,memory baseline better,score inconsistent[scikit-learn]20617:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,memory baseline better,score inconsistent[scikit-learn]20617:3, 20628:2, 20628:3scikit-learn:0.23.2, scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,time baseline better,memory variant better,score inconsistent[scikit-learn]20617:4, 20617:5, 20617:7, 20617:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,memory variant better,score inconsistent[scikit-learn]20617:6, 20628:4, 20628:5, 20628:8scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,time variant better,memory variant better,score inconsistent[scikit-learn]20628:6scikit-learn:0.21.3Individual
sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.confusion_matrix,time variant better,score inconsistent[scikit-learn]20631:1, 20631:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.confusion_matrix,time variant better,memory baseline better,score inconsistent[scikit-learn]20631:2, 20631:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.GridSearchCV, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.metrics.confusion_matrix,time variant better,memory variant better,score inconsistent[scikit-learn]20631:4, 20631:5, 20631:6, 20631:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.RidgeClassifier,score inconsistent[scikit-learn]20634:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.RidgeClassifier,time baseline better,memory baseline better,score inconsistent[scikit-learn]20634:7scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.RidgeClassifier,time baseline better,memory variant better,score inconsistent[scikit-learn]20634:8scikit-learn:0.19.2Individual
sklearn.model_selection.GridSearchCV, sklearn.linear_model.LogisticRegression,time variant better,memory variant better,score inconsistent[scikit-learn]20643:6, 20643:7, 20643:8scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,time baseline better,[scikit-learn]20651:1, 20651:3, 20651:5scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.metrics.confusion_matrix,time variant better,memory variant better,[scikit-learn]20651:6, 20651:7, 20651:8scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,score inconsistent[scikit-learn]20665:1, 20665:7scikit-learn:1.0.1, scikit-learn:0.20.3Individual
sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,score inconsistent[scikit-learn]20665:2, 20665:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,time variant better,memory variant better,score inconsistent[scikit-learn]20665:4, 20665:8scikit-learn:0.22.1, scikit-learn:0.19.2Individual
sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,score inconsistent[scikit-learn]20665:5scikit-learn:0.22Individual
sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,time variant better,score inconsistent[scikit-learn]20665:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,[scikit-learn]20672:2, 20672:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.metrics.f1_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,[scikit-learn]20672:4, 20672:6, 20672:7scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,[scikit-learn]20677:1scikit-learn:1.0.1Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,memory baseline better,[scikit-learn]20677:2scikit-learn:0.24.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,[scikit-learn]20677:4, 20677:5, 20677:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory baseline better,[scikit-learn]20682:2, 20682:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,[scikit-learn]20682:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,[scikit-learn]20682:8scikit-learn:0.19.2Individual
sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.RidgeClassifier,memory baseline better,[scikit-learn]20685:2, 20685:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.RidgeClassifier,time baseline better,[scikit-learn]20685:4scikit-learn:0.22.1Individual
sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.RidgeClassifier,time variant better,score inconsistent[scikit-learn]20685:6scikit-learn:0.21.3Individual
sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.RidgeClassifier,score inconsistent[scikit-learn]20685:7scikit-learn:0.20.3Individual
sklearn.model_selection.cross_val_score, sklearn.feature_extraction.text.TfidfVectorizer, sklearn.linear_model.RidgeClassifier,memory variant better,score inconsistent[scikit-learn]20685:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.neighbors.KNeighborsClassifier, sklearn.pipeline.Pipeline,memory baseline better,[scikit-learn]20689:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.neighbors.KNeighborsClassifier, sklearn.pipeline.Pipeline,time baseline better,memory baseline better,[scikit-learn]20689:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.TfidfTransformer, sklearn.neighbors.KNeighborsClassifier, sklearn.pipeline.Pipeline,time variant better,memory variant better,score inconsistent[scikit-learn]20689:8scikit-learn:0.19.2Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,time baseline better,[scikit-learn]20692:6scikit-learn:0.21.3Individual
sklearn.model_selection.train_test_split, sklearn.naive_bayes.MultinomialNB, sklearn.feature_extraction.text.TfidfVectorizer,memory variant better,[scikit-learn]20692:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.linear_model.RidgeClassifier,memory baseline better,score inconsistent[scikit-learn]20697:6scikit-learn:0.21.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score,memory baseline better,[scikit-learn]20707:2scikit-learn:0.24.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score,time baseline better,memory baseline better,[scikit-learn]20707:3scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score,time baseline better,memory variant better,[scikit-learn]20707:6, 20707:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score,memory variant better,[scikit-learn]20707:8scikit-learn:0.19.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB,memory baseline better,[scikit-learn]20711:2, 20711:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.feature_extraction.text.CountVectorizer, sklearn.model_selection.cross_val_score, sklearn.naive_bayes.MultinomialNB,time variant better,memory variant better,[scikit-learn]20711:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]20849:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,score inconsistent[tensorflow]20849:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,[tensorflow]20976:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,score inconsistent[tensorflow]20976:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,score inconsistent[tensorflow]20976:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory variant better,score inconsistent[tensorflow]20976:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time variant better,memory baseline better,score inconsistent[tensorflow]20976:7tensorflow:1.15.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.preprocessing.image.ImageDataGenerator, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory baseline better,[tensorflow]20976:8tensorflow:1.14.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.losses.MeanSquaredError, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,memory variant better,[tensorflow]20988:2, 20988:5tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.losses.MeanSquaredError, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]20988:4, 20988:7, 20988:8tensorflow:2.2.0, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.GlobalMaxPooling2D,time baseline better,score inconsistent[tensorflow]20997:2tensorflow:2.4.1Individual
cv2.imread, cv2.cvtColor, cv2.resize, cv2.copyMakeBorder,score inconsistent[opencv-python]20997:5opencv-python:4.5.1.48Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.optimizers.Adam, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.layers.MaxPool2D, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.GlobalMaxPooling2D,time baseline better,memory variant better,score inconsistent[tensorflow]20997:5, 20997:7, 20997:8, 20997:9tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Individual
cv2.imread, cv2.cvtColor, cv2.resize, cv2.copyMakeBorder,time variant better,[opencv-python]20997:7, 20997:8, 20997:9, 20997:10opencv-python:4.5.1.48, opencv-python:3.4.2.17Individual
sklearn.tree.plot_sklearn.tree, sklearn.tree.DecisionTreeClassifier,memory variant better,score inconsistent[scikit-learn]21043:1, 21043:2, 21043:3, 21043:4, 21043:5, 21043:6, 21043:7, 21043:8scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time variant better,[scikit-learn]23925:3scikit-learn:0.23.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]23925:6, 24001:3scikit-learn:0.21.3, scikit-learn:0.23.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,memory variant better,[scikit-learn]23925:8scikit-learn:0.19.2Individual
xgboost.XGBRegressor,time variant better,memory variant better,[xgboost]23928:3, 24411:2, 24411:3, 25806:6xgboost:1.3.3, xgboost:1.4.2, xgboost:1.0.2Individual
xgboost.XGBRegressor,memory baseline better,score inconsistent[xgboost]23932:2, 24309:5, 24425:7, 24443:7, 25806:2, 25806:3, 25812:2xgboost:1.4.2, xgboost:1.1.1, xgboost:0.90, xgboost:1.3.3Individual
lightgbm.LGBMRegressor,score inconsistent[lightgbm]23933:2, 24306:3, 24322:3lightgbm:3.2.1, lightgbm:3.1.1Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]23938:2, 23938:3, 24156:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,memory variant better,[scikit-learn]23944:2scikit-learn:0.24.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,time baseline better,[scikit-learn]23944:4, 23948:2scikit-learn:0.22.1, scikit-learn:0.24.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,time baseline better,memory baseline better,[scikit-learn]23948:3scikit-learn:0.23.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,score inconsistent[scikit-learn]23948:4, 23948:5scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,time variant better,memory baseline better,score inconsistent[scikit-learn]23948:6scikit-learn:0.21.3Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,time variant better,score inconsistent[scikit-learn]23948:7scikit-learn:0.20.3Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,time variant better,memory variant better,score inconsistent[scikit-learn]23948:8scikit-learn:0.19.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso,time baseline better,memory baseline better,[scikit-learn]23960:2scikit-learn:0.24.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso,memory baseline better,[scikit-learn]23960:3scikit-learn:0.23.2Individual
sklearn.linear_model.Ridge, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.linear_model.Lasso,time variant better,[scikit-learn]23960:8scikit-learn:0.19.2Individual
xgboost.sklearn.XGBRegressor,memory variant better,[xgboost]23995:3xgboost:1.3.3Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,memory baseline better,[scikit-learn]24001:2scikit-learn:0.24.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory variant better,[scikit-learn]24001:8scikit-learn:0.19.2Individual
tensorflow.GradientTape, tensorflow.keras.optimizers.Adam, tensorflow.shape, tensorflow.keras.Input, tensorflow.reduce_mean, tensorflow.keras.layers.Reshape, tensorflow.exp, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.backend.random_normal, tensorflow.keras.layers.Activation, tensorflow.test.gpu_device_name, tensorflow.keras.layers.Dropout, tensorflow.linalg.diag_part, tensorflow.squeeze, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.metrics.MeanAbsoluteError, tensorflow.config.optimizer.set_jit, tensorflow.keras.backend.clear_session, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.losses.binary_crossentropy, tensorflow.square, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2DTranspose,score inconsistent[tensorflow]24024:1tensorflow:2.7.0Individual
tensorflow.GradientTape, tensorflow.keras.optimizers.Adam, tensorflow.shape, tensorflow.keras.Input, tensorflow.reduce_mean, tensorflow.keras.layers.Reshape, tensorflow.exp, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.backend.random_normal, tensorflow.keras.layers.Activation, tensorflow.test.gpu_device_name, tensorflow.keras.layers.Dropout, tensorflow.linalg.diag_part, tensorflow.squeeze, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.metrics.MeanAbsoluteError, tensorflow.config.optimizer.set_jit, tensorflow.keras.backend.clear_session, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.losses.binary_crossentropy, tensorflow.square, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2DTranspose,memory variant better,score inconsistent[tensorflow]24024:2tensorflow:2.4.1Individual
tensorflow.GradientTape, tensorflow.keras.optimizers.Adam, tensorflow.shape, tensorflow.keras.Input, tensorflow.reduce_mean, tensorflow.keras.layers.Reshape, tensorflow.exp, tensorflow.data.Dataset.from_tensor_slices, tensorflow.keras.backend.random_normal, tensorflow.keras.layers.Activation, tensorflow.test.gpu_device_name, tensorflow.keras.layers.Dropout, tensorflow.linalg.diag_part, tensorflow.squeeze, tensorflow.keras.layers.Conv2D, tensorflow.keras.layers.MaxPooling2D, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.metrics.MeanAbsoluteError, tensorflow.config.optimizer.set_jit, tensorflow.keras.backend.clear_session, tensorflow.keras.Model, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.keras.losses.binary_crossentropy, tensorflow.square, tensorflow.keras.models.Sequential, tensorflow.keras.layers.Conv2DTranspose,time baseline better,memory variant better,[tensorflow]24024:4tensorflow:2.2.0Individual
xgboost.XGBRegressor,time variant better,score inconsistent[xgboost]24096:7, 24150:7, 25806:4, 25812:4, 25812:5, 25812:6xgboost:0.90, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,memory baseline better,[scikit-learn]24100:2scikit-learn:0.24.2Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.dummy.DummyRegressor, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.linear_model.Lasso,time baseline better,score inconsistent[scikit-learn]24100:4scikit-learn:0.22.1Individual
sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]24113:2, 24113:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,time baseline better,[scikit-learn]24113:7scikit-learn:0.20.3Individual
sklearn.metrics.mean_squared_error, sklearn.linear_model.LinearRegression,memory variant better,[scikit-learn]24113:8scikit-learn:0.19.2Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,memory baseline better,[scikit-learn]24125:1, 24161:7, 24419:2, 24419:3scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,score inconsistent[scikit-learn]24125:4, 24125:5, 24125:6, 24161:2, 24161:3scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,memory baseline better,score inconsistent[scikit-learn]24125:7scikit-learn:0.20.3Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,memory variant better,score inconsistent[scikit-learn]24125:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.metrics.RootMeanSquaredError, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,memory variant better,score inconsistent[tensorflow]24127:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.metrics.RootMeanSquaredError, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,score inconsistent[tensorflow]24127:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.metrics.RootMeanSquaredError, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,time baseline better,memory baseline better,score inconsistent[tensorflow]24127:4tensorflow:2.2.0Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error,time baseline better,[scikit-learn]24127:5scikit-learn:1.0.1Individual
optuna.create_study, optuna.visualization.plot_slice,time baseline better,[optuna]24137:3optuna:2.7.0Individual
optuna.create_study, optuna.visualization.plot_slice,time variant better,[optuna]24137:7optuna:2.3.0Individual
xgboost.XGBRegressor,time baseline better,memory variant better,[xgboost]24150:2, 24425:1, 24425:2xgboost:1.4.2, xgboost:1.5.1Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,memory baseline better,[scikit-learn]24156:2scikit-learn:0.24.2Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time variant better,[scikit-learn]24156:6scikit-learn:0.21.3Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,time baseline better,[scikit-learn]24161:4scikit-learn:0.22.1Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,time baseline better,memory variant better,[scikit-learn]24161:8scikit-learn:0.19.2Individual
sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]24303:2scikit-learn:0.24.2Individual
sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,[scikit-learn]24303:4scikit-learn:0.22.1Individual
lightgbm.LGBMRegressor,time baseline better,memory baseline better,score inconsistent[lightgbm]24306:6, 24320:7, 24339:6, 24339:7, 24401:6lightgbm:2.2.3, lightgbm:2.1.2Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]24310:1, 24310:2, 24310:3, 24310:4, 24310:5, 24310:6scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,time baseline better,score inconsistent[scikit-learn]24310:2, 24310:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,time variant better,score inconsistent[scikit-learn]24310:5scikit-learn:0.22Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24310:7scikit-learn:0.20.3Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,memory baseline better,score inconsistent[scikit-learn]24310:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24318:4, 24318:7scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]24318:6scikit-learn:1.0.1Individual
lightgbm.LGBMRegressor,time baseline better,memory variant better,score inconsistent[lightgbm]24320:3, 24320:5, 24339:5, 24401:4, 24401:5lightgbm:3.1.1, lightgbm:2.3.1, lightgbm:3.0.0Individual
lightgbm.LGBMRegressor,memory baseline better,score inconsistent[lightgbm]24320:6, 24422:6, 24422:7lightgbm:2.2.3, lightgbm:2.1.2Individual
sklearn.svm.SVR, sklearn.tree.DecisionTreeRegressor, sklearn.ensemble.BaggingRegressor,score inconsistent[scikit-learn]24321:2, 24321:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.svm.SVR, sklearn.tree.DecisionTreeRegressor, sklearn.ensemble.BaggingRegressor,time baseline better,[scikit-learn]24321:5scikit-learn:0.22Individual
sklearn.svm.SVR, sklearn.tree.DecisionTreeRegressor, sklearn.ensemble.BaggingRegressor,time variant better,[scikit-learn]24321:6scikit-learn:0.21.3Individual
sklearn.svm.SVR, sklearn.tree.DecisionTreeRegressor, sklearn.ensemble.BaggingRegressor,memory variant better,[scikit-learn]24321:8scikit-learn:0.19.2Individual
sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.feature_selection.mutual_info_regression,time baseline better,memory baseline better,score inconsistent[scikit-learn]24322:4, 24322:5scikit-learn:1.0.1Individual
lightgbm.Dataset, lightgbm.train,time baseline better,memory variant better,[lightgbm]24324:2, 24324:3, 24324:5, 31775:6lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:2.3.1, lightgbm:2.2.3Individual
sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24324:4, 24324:7scikit-learn:1.0.1Individual
lightgbm.Dataset, lightgbm.train,time baseline better,memory baseline better,[lightgbm]24324:6, 24452:6, 31771:6lightgbm:2.2.3Individual
sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24325:2, 24325:3, 24325:4, 24325:5scikit-learn:1.0.1Individual
xgboost.XGBRegressor,time variant better,memory baseline better,[xgboost]24325:4, 24411:5, 24411:6xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Individual
sklearn.linear_model.SGDRegressor, sklearn.model_selection.cross_val_score,time variant better,memory variant better,score inconsistent[scikit-learn]24329:1, 24329:2, 24329:3, 24329:4, 24329:5scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.preprocessing.MinMaxScaler, sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]24346:8scikit-learn:0.19.2Individual
lightgbm.LGBMRegressor,time variant better,memory variant better,[lightgbm]24347:3lightgbm:3.1.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24347:4, 24347:6scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,score inconsistent[scikit-learn]24347:4scikit-learn:1.0.1Individual
lightgbm.LGBMRegressor,time variant better,memory baseline better,[lightgbm]24347:4lightgbm:3.0.0Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]24347:5scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]24347:6scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]24347:7scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]24358:2, 24358:3, 24358:7scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split,time variant better,memory variant better,score inconsistent[scikit-learn]24369:3, 24369:4, 24369:5, 24369:6, 24369:7scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint,memory baseline better,[tensorflow]24374:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint,memory variant better,[tensorflow]24374:5tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint,time baseline better,memory variant better,[tensorflow]24374:7tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint,time baseline better,memory variant better,score inconsistent[tensorflow]24374:8tensorflow:1.14.0Individual
sklearn.linear_model.LinearRegression,time baseline better,memory variant better,score inconsistent[scikit-learn]24413:3, 24413:5scikit-learn:0.23.2, scikit-learn:0.22Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,time variant better,score inconsistent[scikit-learn]24419:6, 24419:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor,time variant better,memory variant better,score inconsistent[scikit-learn]24419:8scikit-learn:0.19.2Individual
sklearn.preprocessing.OneHotEncoder, sklearn.preprocessing.LabelEncoder,time baseline better,score inconsistent[scikit-learn]24451:3scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24451:4scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]24451:5, 24451:6scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.preprocessing.LabelEncoder,memory baseline better,score inconsistent[scikit-learn]24451:5, 24451:6scikit-learn:1.0.1Individual
sklearn.preprocessing.OneHotEncoder, sklearn.preprocessing.LabelEncoder,time variant better,score inconsistent[scikit-learn]24451:7scikit-learn:1.0.1Individual
category_encoders.one_hot.OneHotEncoder,time baseline better,[category_encoders]24452:3, 24452:4category_encoders:2.3.0Individual
category_encoders.one_hot.OneHotEncoder,time variant better,memory variant better,[category_encoders]24452:5category_encoders:2.3.0Individual
catboost.CatBoostRegressor,time baseline better,[catboost]24472:2catboost:0.25.1Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24474:1scikit-learn:1.0.1Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]24474:2, 24474:3, 24491:5scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]24474:4, 24474:5, 24474:6, 24491:4scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24474:5scikit-learn:0.22Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]24474:6, 24474:7, 24491:6scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]24474:8scikit-learn:0.19.2Individual
lightgbm.LGBMRegressor, lightgbm.fit,time baseline better,memory variant better,[lightgbm]24485:1, 24485:3lightgbm:3.3.1, lightgbm:3.1.1Individual
sklearn.metrics.make_scorer, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.cross_validate, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24485:2scikit-learn:1.0.1Individual
lightgbm.LGBMRegressor, lightgbm.fit,memory variant better,[lightgbm]24485:2lightgbm:3.2.1Individual
sklearn.metrics.make_scorer, sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.cross_validate, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24485:3, 24485:4, 24485:5, 24485:6, 24485:7scikit-learn:1.0.1Individual
sklearn.model_selection.train_test_split, sklearn.ensemble.RandomForestRegressor, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]24491:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,[scikit-learn]24511:2, 24511:4, 24511:5, 24511:6, 24511:7, 24511:8scikit-learn:1.0.1, scikit-learn:0.24.2Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24511:3scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.KFold, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24514:2, 24514:5scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.KFold, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24514:3, 24514:4, 24514:6, 24514:7scikit-learn:1.0.1Individual
lightgbm.LGBMClassifier,memory variant better,[lightgbm]24514:5lightgbm:2.3.1Individual
lightgbm.LGBMClassifier,time baseline better,memory baseline better,[lightgbm]24514:6lightgbm:2.2.3Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.metrics.AUC, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.ReLU, tensorflow.keras.layers.concatenate,memory variant better,score inconsistent[tensorflow]24520:2, 24520:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.optimizers.Adam, tensorflow.keras.metrics.AUC, tensorflow.keras.layers.Embedding, tensorflow.keras.models.Model, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.layers.ReLU, tensorflow.keras.layers.concatenate,score inconsistent[tensorflow]24520:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.random.set_seed, tensorflow.keras.backend.clear_session,time variant better,score inconsistent[tensorflow]24522:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.random.set_seed, tensorflow.keras.backend.clear_session,time variant better,memory variant better,score inconsistent[tensorflow]24522:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.random.set_seed, tensorflow.keras.backend.clear_session,time variant better,memory baseline better,score inconsistent[tensorflow]24522:4tensorflow:2.2.0Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24528:2, 24528:4, 24528:5, 24528:6, 24528:8scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,time variant better,memory variant better,score inconsistent[scikit-learn]24531:2, 24531:4, 24531:7scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,memory variant better,score inconsistent[scikit-learn]24531:3scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,time variant better,score inconsistent[scikit-learn]24531:5scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder, sklearn.metrics.roc_curve, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]24531:6scikit-learn:1.0.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,[scikit-learn]24543:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]24543:4scikit-learn:0.22.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]24543:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]24575:2, 24575:3, 24575:4, 24575:7scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.metrics.roc_auc_score, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,time baseline better,score inconsistent[scikit-learn]24575:5, 24575:6scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,[scikit-learn]24576:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24576:3scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]24576:4, 24612:4scikit-learn:0.22.1Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]24576:7scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24581:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,score inconsistent[scikit-learn]24581:8scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,memory variant better,score inconsistent[scikit-learn]24585:1, 24585:2, 24585:3, 24585:4, 24585:5scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,memory variant better,score inconsistent[scikit-learn]24585:6, 24585:7, 24585:8scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.preprocessing.OrdinalEncoder, sklearn.metrics.confusion_matrix,time variant better,[scikit-learn]24594:3scikit-learn:0.23.2Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.preprocessing.OrdinalEncoder, sklearn.metrics.confusion_matrix,memory variant better,[scikit-learn]24594:6scikit-learn:0.21.3Individual
sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.preprocessing.OrdinalEncoder, sklearn.metrics.confusion_matrix,time baseline better,memory variant better,[scikit-learn]24594:7scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]24607:2, 24646:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]24607:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24610:2, 24610:3, 24610:7scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,score inconsistent[scikit-learn]24610:4, 24610:5, 24610:6scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]24612:8, 24667:8scikit-learn:0.19.2Individual
sklearn.preprocessing.MinMaxScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]24626:2, 24626:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.preprocessing.MinMaxScaler, sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]24626:8scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]24646:8scikit-learn:0.19.2Individual
sklearn.preprocessing.OneHotEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24649:3, 24649:4, 24649:5, 24649:6, 24649:7scikit-learn:1.0.1Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.train_test_split, sklearn.model_selection.cross_val_score, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24677:4, 24677:5, 24677:7scikit-learn:1.0.1Individual
sklearn.ensemble.RandomForestClassifier,time baseline better,[scikit-learn]24887:2scikit-learn:0.24.2Individual
sklearn.ensemble.RandomForestClassifier,memory variant better,[scikit-learn]24887:6scikit-learn:0.21.3Individual
sklearn.ensemble.RandomForestClassifier,memory baseline better,[scikit-learn]24887:8scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier,time variant better,memory variant better,score inconsistent[scikit-learn]24888:1, 24888:4, 24888:5, 24888:6, 24888:7, 24888:8scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.ensemble.RandomForestClassifier,time variant better,memory baseline better,score inconsistent[scikit-learn]24888:2, 24888:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,score inconsistent[scikit-learn]24894:2, 24894:3, 24894:5, 24895:7scikit-learn:1.0.1Individual
lightgbm.LGBMClassifier,time variant better,[lightgbm]24895:2, 25003:2, 25054:1lightgbm:3.2.1, lightgbm:3.3.1Individual
sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,score inconsistent[scikit-learn]24895:4scikit-learn:1.0.1Individual
sklearn.model_selection.KFold, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]24895:5, 24895:6scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,memory variant better,[scikit-learn]24902:2scikit-learn:0.24.2Individual
sklearn.preprocessing.StandardScaler, sklearn.ensemble.RandomForestClassifier, sklearn.neural_network.MLPClassifier, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]24902:8scikit-learn:0.19.2Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.model_selection.cross_val_score, sklearn.linear_model.Lasso, sklearn.metrics.roc_curve,time baseline better,memory variant better,[scikit-learn]24915:6scikit-learn:0.21.3Individual
sklearn.metrics.roc_auc_score, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.model_selection.cross_val_score, sklearn.linear_model.Lasso, sklearn.metrics.roc_curve,memory variant better,[scikit-learn]24915:7, 24915:8scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.impute.KNNImputer, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,memory baseline better,[scikit-learn]24937:3scikit-learn:0.23.2Individual
sklearn.preprocessing.StandardScaler, sklearn.impute.KNNImputer, sklearn.compose.ColumnTransformer, sklearn.preprocessing.OneHotEncoder, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,time variant better,[scikit-learn]24937:4scikit-learn:0.22.1Individual
catboost.CatBoostClassifier,time variant better,score inconsistent[catboost]24959:1, 24959:2, 25477:1, 25477:2, 25477:3catboost:1.0.3, catboost:0.25.1, catboost:0.24.4Individual
category_encoders.TargetEncoder,score inconsistent[category_encoders]24960:2, 24960:3category_encoders:1.3.0Individual
category_encoders.TargetEncoder,memory baseline better,score inconsistent[category_encoders]24960:4category_encoders:1.3.0Individual
category_encoders.TargetEncoder,time variant better,memory baseline better,score inconsistent[category_encoders]24960:5category_encoders:1.3.0Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,time variant better,memory baseline better,[scikit-learn]24969:1scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.OneHotEncoder, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]24969:2scikit-learn:0.24.2Individual
sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]24970:1, 24970:3, 24970:5scikit-learn:1.0.1Individual
sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]24970:2, 24970:4scikit-learn:1.0.1Individual
sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]24970:4, 24970:5scikit-learn:1.0.1Individual
sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory variant better,[scikit-learn]24970:6, 24970:7scikit-learn:1.0.1Individual
sklearn.preprocessing.minmax_scale, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory variant better,score inconsistent[scikit-learn]24970:6, 24970:7scikit-learn:1.0.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,score inconsistent[scikit-learn]24974:8scikit-learn:0.19.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]25001:3scikit-learn:0.23.2Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]25001:4scikit-learn:0.22.1Individual
sklearn.linear_model.LogisticRegression, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]25001:7scikit-learn:0.20.3Individual
lightgbm.LGBMClassifier,time baseline better,memory variant better,[lightgbm]25003:3, 25011:4lightgbm:3.1.1, lightgbm:3.0.0Individual
sklearn.metrics.roc_auc_score, sklearn.model_selection.KFold, sklearn.metrics.accuracy_score, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]25003:6scikit-learn:1.0.1Individual
sklearn.impute.KNNImputer, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split, sklearn.metrics.classification_report,time variant better,[scikit-learn]25015:5scikit-learn:0.22Individual
sklearn.ensemble.RandomForestClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]25049:2scikit-learn:1.0.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]25049:6, 25049:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.linear_model.LogisticRegression, sklearn.model_selection.cross_val_score, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,[scikit-learn]25049:8scikit-learn:0.19.2Individual
lightgbm.Dataset, lightgbm.train, lightgbm.LGBMClassifier,time baseline better,[lightgbm]25118:2lightgbm:3.2.1Individual
lightgbm.Dataset, lightgbm.train, lightgbm.LGBMClassifier,time baseline better,score inconsistent[lightgbm]25118:5, 25118:6lightgbm:2.3.1, lightgbm:2.2.3Individual
lightgbm.Dataset, lightgbm.train, lightgbm.LGBMClassifier,score inconsistent[lightgbm]25118:7lightgbm:2.1.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.model_selection.GridSearchCV, sklearn.model_selection.train_test_split, sklearn.tree.DecisionTreeClassifier,memory baseline better,[scikit-learn]25119:2, 25119:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.model_selection.GridSearchCV, sklearn.model_selection.train_test_split, sklearn.tree.DecisionTreeClassifier,time variant better,[scikit-learn]25119:6, 25119:7, 25119:8scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.random.set_seed, tensorflow.keras.losses.SparseCategoricalCrossentropy,time baseline better,score inconsistent[tensorflow]25122:6tensorflow:2.0.0Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time variant better,memory baseline better,score inconsistent[scikit-learn]25132:2, 25132:3, 25132:4, 25132:5, 25132:6, 25132:7, 25132:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU,memory baseline better,[tensorflow]25140:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU,time variant better,score inconsistent[tensorflow]25140:2tensorflow:2.4.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU,memory variant better,score inconsistent[tensorflow]25140:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU,score inconsistent[tensorflow]25140:4, 25140:5, 25140:6tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU,time variant better,memory variant better,score inconsistent[tensorflow]25140:7tensorflow:1.15.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.LeakyReLU,time baseline better,memory variant better,[tensorflow]25140:8, 25140:9tensorflow:1.14.0, tensorflow:1.13.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,score inconsistent[scikit-learn]25141:3scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.preprocessing.LabelEncoder, sklearn.model_selection.StratifiedKFold,memory baseline better,[scikit-learn]25141:5, 25141:6scikit-learn:1.0.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session,memory variant better,[tensorflow]25151:3tensorflow:2.3.1Individual
optuna.samplers.TPESampler, optuna.create_study,score inconsistent[optuna]25155:4optuna:2.6.0Individual
optuna.samplers.TPESampler, optuna.create_study,time baseline better,[optuna]25155:5optuna:2.5.0Individual
optuna.samplers.TPESampler, optuna.create_study,time baseline better,memory variant better,score inconsistent[optuna]25155:7optuna:2.3.0Individual
catboost.CatBoostClassifier,time variant better,[catboost]25326:1, 25326:2, 25326:3catboost:1.0.3, catboost:0.25.1, catboost:0.24.4Individual
sklearn.preprocessing.LabelEncoder,memory variant better,[scikit-learn]25326:8scikit-learn:1.0.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.expand_dims, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPooling1D,time variant better,[tensorflow]25345:1tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.expand_dims, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPooling1D,memory variant better,score inconsistent[tensorflow]25345:2, 25345:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.utils.to_categorical, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Flatten, tensorflow.expand_dims, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.layers.MaxPooling1D,time variant better,memory variant better,score inconsistent[tensorflow]25345:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,memory baseline better,[tensorflow]25355:4tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,score inconsistent[tensorflow]25355:5tensorflow:2.1.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,time baseline better,memory variant better,score inconsistent[tensorflow]25355:6, 25355:7, 25355:9tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.13.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.InputLayer, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping,time baseline better,memory variant better,[tensorflow]25355:8tensorflow:1.14.0Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.train_test_split,time variant better,[scikit-learn]25380:4scikit-learn:1.0.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]25380:8scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]25387:5scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]25387:6scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.SparseCategoricalCrossentropy,time baseline better,memory baseline better,score inconsistent[tensorflow]25406:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.SparseCategoricalCrossentropy,time variant better,memory variant better,score inconsistent[tensorflow]25406:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.SparseCategoricalCrossentropy,memory variant better,score inconsistent[tensorflow]25406:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.losses.SparseCategoricalCrossentropy,time baseline better,memory variant better,score inconsistent[tensorflow]25406:4tensorflow:2.2.0Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]25415:4scikit-learn:0.22.1Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,memory baseline better,[scikit-learn]25415:6scikit-learn:0.21.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time variant better,memory baseline better,[scikit-learn]25415:7scikit-learn:0.20.3Individual
sklearn.ensemble.RandomForestClassifier, sklearn.metrics.accuracy_score, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]25415:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time variant better,[tensorflow]25417:3, 25417:5tensorflow:2.3.1, tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time baseline better,score inconsistent[tensorflow]25417:7tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time baseline better,memory variant better,[tensorflow]25417:9tensorflow:1.13.1Individual
sklearn.preprocessing.MinMaxScaler, sklearn.metrics.log_loss, sklearn.compose.ColumnTransformer, sklearn.pipeline.Pipeline, sklearn.linear_model.LogisticRegression, sklearn.model_selection.train_test_split,time variant better,memory variant better,score inconsistent[scikit-learn]25419:6, 25419:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,score inconsistent[scikit-learn]25420:1scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,time variant better,memory baseline better,score inconsistent[scikit-learn]25420:3, 25420:4, 25420:5, 25420:7scikit-learn:0.23.2, scikit-learn:1.0.1Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,time variant better,memory variant better,score inconsistent[scikit-learn]25420:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time variant better,[tensorflow]25422:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time variant better,memory variant better,[tensorflow]25422:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,memory baseline better,[tensorflow]25422:4tensorflow:2.2.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.losses.CategoricalCrossentropy, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,score inconsistent[tensorflow]25443:1tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.losses.CategoricalCrossentropy, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,time variant better,[tensorflow]25443:2tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.losses.CategoricalCrossentropy, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,memory variant better,[tensorflow]25443:4tensorflow:2.7.0Individual
tensorflow.keras.optimizers.Adam, tensorflow.keras.layers.Embedding, tensorflow.keras.losses.CategoricalCrossentropy, tensorflow.keras.Sequential, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.utils.to_categorical, tensorflow.keras.backend.clear_session, tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Conv1D, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Input, tensorflow.keras.layers.Flatten, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.ReduceLROnPlateau,memory baseline better,[tensorflow]25443:7tensorflow:2.7.0Individual
sklearn.model_selection.train_test_split, sklearn.multioutput.MultiOutputRegressor, sklearn.ensemble.HistGradientBoostingRegressor,time variant better,memory variant better,score inconsistent[scikit-learn]25462:1, 25462:2scikit-learn:1.0.1, scikit-learn:0.24.2Individual
sklearn.model_selection.train_test_split, sklearn.multioutput.MultiOutputRegressor, sklearn.ensemble.HistGradientBoostingRegressor,time variant better,score inconsistent[scikit-learn]25462:3scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.multioutput.MultiOutputRegressor, sklearn.ensemble.HistGradientBoostingRegressor,time baseline better,memory baseline better,score inconsistent[scikit-learn]25462:4, 25462:5, 25462:6scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.train_test_split, sklearn.multioutput.MultiOutputRegressor,score inconsistent[scikit-learn]25475:1, 25475:3, 25475:4, 25475:5, 25475:6, 25475:7scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.train_test_split, sklearn.multioutput.MultiOutputRegressor,time baseline better,score inconsistent[scikit-learn]25475:2scikit-learn:0.24.2Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.train_test_split, sklearn.multioutput.MultiOutputRegressor,time baseline better,memory variant better,score inconsistent[scikit-learn]25475:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,time variant better,score inconsistent[scikit-learn]25477:1, 25477:2, 25477:3, 25477:4, 25477:5, 25477:6, 25477:7, 25477:8scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.utils.to_categorical, tensorflow.random.set_seed, tensorflow.keras.backend.clear_session,time baseline better,score inconsistent[tensorflow]25479:1tensorflow:2.7.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.utils.to_categorical, tensorflow.random.set_seed, tensorflow.keras.backend.clear_session,time baseline better,memory baseline better,score inconsistent[tensorflow]25479:2, 25479:4tensorflow:2.4.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.optimizers.Adam, tensorflow.keras.Sequential, tensorflow.keras.layers.Dropout, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ReduceLROnPlateau, tensorflow.keras.utils.to_categorical, tensorflow.random.set_seed, tensorflow.keras.backend.clear_session,time baseline better,memory variant better,score inconsistent[tensorflow]25479:3tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time variant better,memory variant better,score inconsistent[tensorflow]25502:2, 25502:3tensorflow:2.4.1, tensorflow:2.3.1Individual
tensorflow.keras.layers.BatchNormalization, tensorflow.keras.layers.Dense, tensorflow.keras.layers.Dropout, tensorflow.keras.models.Sequential, tensorflow.keras.utils.to_categorical,time variant better,memory baseline better,score inconsistent[tensorflow]25502:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,time variant better,[tensorflow]25791:3tensorflow:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,memory variant better,[tensorflow]25791:5tensorflow:2.1.0Individual
sklearn.preprocessing.StandardScaler, sklearn.model_selection.train_test_split,time baseline better,[scikit-learn]25791:6, 25791:7scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential,time variant better,memory variant better,score inconsistent[tensorflow]25791:8, 25791:9tensorflow:1.14.0, tensorflow:1.13.1Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory baseline better,[scikit-learn]25799:2, 25799:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time variant better,[scikit-learn]25799:4scikit-learn:0.22.1Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,time baseline better,[scikit-learn]25799:6, 25799:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.metrics.r2_score, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression,memory variant better,[scikit-learn]25799:8scikit-learn:0.19.2Individual
catboost.CatBoostRegressor,time variant better,memory baseline better,score inconsistent[catboost]25804:1, 25804:2, 25804:3, 25804:4, 25804:5, 25804:6catboost:1.0.3, catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23, catboost:0.20.2Individual
sklearn.preprocessing.RobustScaler, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split,time variant better,memory baseline better,score inconsistent[scikit-learn]25804:2, 25804:3, 25804:4, 25804:5scikit-learn:1.0.1Individual
catboost.CatBoostRegressor,time baseline better,memory baseline better,score inconsistent[catboost]25804:7, 25804:8, 25804:9, 25804:10, 25804:11catboost:0.17.5, catboost:0.16.5, catboost:0.15.2, catboost:0.12.2, catboost:0.10.3Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.tree.DecisionTreeRegressor,memory baseline better,[scikit-learn]25819:2, 25819:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.tree.DecisionTreeRegressor,time variant better,[scikit-learn]25819:4scikit-learn:0.22.1Individual
sklearn.metrics.mean_absolute_error, sklearn.model_selection.train_test_split, sklearn.tree.DecisionTreeRegressor,time baseline better,memory variant better,[scikit-learn]25819:8scikit-learn:0.19.2Individual
sklearn.multioutput.MultiOutputRegressor, sklearn.metrics.mean_squared_log_error, sklearn.ensemble.GradientBoostingRegressor,memory baseline better,[scikit-learn]25821:2, 25821:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.multioutput.MultiOutputRegressor, sklearn.metrics.mean_squared_log_error, sklearn.ensemble.GradientBoostingRegressor,time variant better,[scikit-learn]25821:6, 25821:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.multioutput.MultiOutputRegressor, sklearn.metrics.mean_squared_log_error, sklearn.ensemble.GradientBoostingRegressor,time variant better,memory variant better,score inconsistent[scikit-learn]25821:8scikit-learn:0.19.2Individual
catboost.CatBoostRegressor,time variant better,memory variant better,score inconsistent[catboost]25861:1, 25861:2, 25861:3, 25861:4, 25861:5catboost:1.0.3, catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23Individual
sklearn.metrics.r2_score, sklearn.model_selection.cross_validate, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingRegressor,memory baseline better,score inconsistent[scikit-learn]25881:2scikit-learn:0.24.2Individual
sklearn.metrics.r2_score, sklearn.model_selection.cross_validate, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingRegressor,memory baseline better,[scikit-learn]25881:3scikit-learn:0.23.2Individual
sklearn.metrics.r2_score, sklearn.model_selection.cross_validate, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingRegressor,time variant better,[scikit-learn]25881:6, 25881:7scikit-learn:0.21.3, scikit-learn:0.20.3Individual
sklearn.metrics.r2_score, sklearn.model_selection.cross_validate, sklearn.model_selection.train_test_split, sklearn.ensemble.GradientBoostingRegressor,time variant better,memory variant better,[scikit-learn]25881:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,time baseline better,memory baseline better,[tensorflow]25883:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,time variant better,[tensorflow]25883:3, 25883:5, 25883:9tensorflow:2.3.1, tensorflow:2.4.1, tensorflow:2.0.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,time baseline better,memory variant better,[tensorflow]25883:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,memory variant better,[tensorflow]25883:7tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,time baseline better,[tensorflow]25883:8tensorflow:2.1.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,score inconsistent[tensorflow]25883:10tensorflow:1.15.2Individual
tensorflow.keras.layers.Dense, tensorflow.keras.Sequential, tensorflow.keras.losses.MeanSquaredLogarithmicError,time baseline better,memory variant better,score inconsistent[tensorflow]25883:11, 25883:12tensorflow:1.14.0, tensorflow:1.13.1Individual
catboost.CatBoostRegressor,time variant better,memory variant better,[catboost]25885:1, 25885:2, 25885:3, 25885:4, 25885:5, 25885:6catboost:1.0.3, catboost:0.25.1, catboost:0.24.4, catboost:0.23.2, catboost:0.23, catboost:0.20.2Individual
catboost.CatBoostRegressor,time baseline better,memory variant better,[catboost]25885:7catboost:0.17.5Individual
catboost.CatBoostRegressor,time baseline better,memory variant better,score inconsistent[catboost]25885:8, 25885:9, 25885:10, 25885:11catboost:0.16.5, catboost:0.15.2, catboost:0.12.2, catboost:0.10.3Individual
sklearn.metrics.mean_absolute_error, sklearn.linear_model.LogisticRegression, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.tree.DecisionTreeRegressor,memory baseline better,[scikit-learn]25897:2, 25897:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_absolute_error, sklearn.linear_model.LogisticRegression, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.tree.DecisionTreeRegressor,time baseline better,score inconsistent[scikit-learn]25897:4scikit-learn:0.22.1Individual
sklearn.metrics.mean_absolute_error, sklearn.linear_model.LogisticRegression, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.tree.DecisionTreeRegressor,score inconsistent[scikit-learn]25897:5scikit-learn:0.22Individual
sklearn.metrics.mean_absolute_error, sklearn.linear_model.LogisticRegression, sklearn.linear_model.LinearRegression, sklearn.ensemble.RandomForestRegressor, sklearn.tree.DecisionTreeRegressor,time variant better,[scikit-learn]25897:8scikit-learn:0.19.2Individual
tensorflow.keras.layers.Dense, tensorflow.math.exp, tensorflow.keras.optimizers.SGD, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.backend.clear_session, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.losses.MeanSquaredLogarithmicError,time baseline better,[tensorflow]25921:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.math.exp, tensorflow.keras.optimizers.SGD, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.backend.clear_session, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.losses.MeanSquaredLogarithmicError,memory variant better,score inconsistent[tensorflow]25921:2, 25921:3, 25921:4tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.math.exp, tensorflow.keras.optimizers.SGD, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.backend.clear_session, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.losses.MeanSquaredLogarithmicError,score inconsistent[tensorflow]25921:5tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.math.exp, tensorflow.keras.optimizers.SGD, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.load_model, tensorflow.keras.models.Sequential, tensorflow.keras.backend.clear_session, tensorflow.keras.callbacks.LearningRateScheduler, tensorflow.keras.losses.MeanSquaredLogarithmicError,time variant better,memory variant better,score inconsistent[tensorflow]25921:6, 25921:7tensorflow:2.3.1, tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time baseline better,memory baseline better,[tensorflow]25958:1, 25997:1tensorflow:2.7.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time variant better,score inconsistent[tensorflow]25958:7tensorflow:1.15.2Individual
sklearn.preprocessing.StandardScaler,time variant better,memory baseline better,[scikit-learn]25997:2, 25997:3, 25997:4, 25997:5, 25997:6, 25997:7, 25997:8scikit-learn:1.0.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,time baseline better,[tensorflow]25997:2tensorflow:2.4.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.models.Sequential,memory variant better,[tensorflow]25997:4tensorflow:2.2.0Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler,time baseline better,[scikit-learn]1117:1scikit-learn:1.0.1Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler,memory baseline better,[scikit-learn]1117:2, 1117:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.decomposition.PCA, sklearn.preprocessing.StandardScaler,time baseline better,memory variant better,[scikit-learn]1117:8scikit-learn:0.19.2Individual
sklearn.svm.SVR, sklearn.ensemble.AdaBoostRegressor, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.neighbors.KNeighborsRegressor, sklearn.cluster.KMeans, sklearn.ensemble.RandomForestRegressor,memory baseline better,[scikit-learn]10526:2, 10526:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.svm.SVR, sklearn.ensemble.AdaBoostRegressor, sklearn.metrics.mean_squared_error, sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.neighbors.KNeighborsRegressor, sklearn.cluster.KMeans, sklearn.ensemble.RandomForestRegressor,time variant better,memory variant better,[scikit-learn]10526:8scikit-learn:0.19.2Individual
keras.layers.Dropout, keras.models.Sequential, keras.utils.np_utils.to_categorical, keras.layers.Dense, keras.layers.Conv2D, keras.optimizers.RMSprop, keras.layers.MaxPool2D, keras.layers.Flatten,time variant better,[keras]18352:4, 18352:7keras:2.4.3, keras:2.3.1Individual
keras.layers.Dropout, keras.models.Sequential, keras.utils.np_utils.to_categorical, keras.layers.Dense, keras.layers.Conv2D, keras.optimizers.RMSprop, keras.layers.MaxPool2D, keras.layers.Flatten,time baseline better,[keras]18352:10keras:2.3.1Individual
keras.layers.Dropout, keras.models.Sequential, keras.utils.np_utils.to_categorical, keras.layers.Dense, keras.layers.Conv2D, keras.optimizers.RMSprop, keras.layers.MaxPool2D, keras.layers.Flatten,memory variant better,[keras]18352:12keras:2.3.1Individual
tensorflow.keras.layers.Dense, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,memory baseline better,[tensorflow]19451:4tensorflow:2.2.0Individual
tensorflow.keras.layers.Dense, tensorflow.keras.callbacks.EarlyStopping, tensorflow.keras.callbacks.ModelCheckpoint, tensorflow.keras.models.Sequential, tensorflow.random.set_seed,time variant better,[tensorflow]19451:6tensorflow:2.0.0Individual
sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]22215:2, 22215:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]22215:6scikit-learn:0.21.3Individual
sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]22215:7scikit-learn:0.20.3Individual
sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,time variant better,memory variant better,[scikit-learn]22215:8scikit-learn:0.19.2Individual
sklearn.linear_model.LinearRegression,time variant better,[scikit-learn]22234:6scikit-learn:0.21.3Individual
sklearn.metrics.mean_absolute_error, sklearn.linear_model.ARDRegression,time variant better,[scikit-learn]22281:1, 22281:2, 22281:3scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.metrics.mean_absolute_error, sklearn.linear_model.ARDRegression,time baseline better,memory baseline better,[scikit-learn]22281:4, 22281:5, 22281:6, 22281:7, 22281:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Individual
sklearn.metrics.mean_absolute_error, sklearn.metrics.mean_squared_error, sklearn.linear_model.HuberRegressor,time variant better,[scikit-learn]22302:1, 22302:4, 22302:5scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Individual
sklearn.metrics.mean_absolute_error, sklearn.metrics.mean_squared_error, sklearn.linear_model.HuberRegressor,memory baseline better,[scikit-learn]22302:2scikit-learn:0.24.2Individual
sklearn.metrics.mean_absolute_error, sklearn.metrics.mean_squared_error, sklearn.linear_model.HuberRegressor,time variant better,memory baseline better,[scikit-learn]22302:3scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.neural_network.MLPRegressor, sklearn.preprocessing.LabelEncoder,memory baseline better,[scikit-learn]22322:2scikit-learn:0.24.2Individual
sklearn.model_selection.train_test_split, sklearn.neural_network.MLPRegressor, sklearn.preprocessing.LabelEncoder,time baseline better,[scikit-learn]22322:3scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,time baseline better,memory baseline better,[scikit-learn]22334:2, 22334:3scikit-learn:0.24.2, scikit-learn:0.23.2Individual
sklearn.model_selection.train_test_split, sklearn.linear_model.LinearRegression, sklearn.preprocessing.LabelEncoder,time variant better,[scikit-learn]22334:5scikit-learn:0.22Individual
sklearn.model_selection.GroupKFold,time variant better,[scikit-learn]22369:3scikit-learn:0.22.1Individual
sklearn.model_selection.GroupKFold,memory baseline better,[scikit-learn]22369:4, 22369:5scikit-learn:0.23.2, scikit-learn:0.24.2Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.GroupKFold,time variant better,[scikit-learn]22388:1, 22388:5scikit-learn:1.0.1, scikit-learn:0.22Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.GroupKFold,memory baseline better,[scikit-learn]22388:2scikit-learn:0.24.2Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.GroupKFold,time variant better,memory baseline better,[scikit-learn]22388:3scikit-learn:0.23.2Individual
sklearn.linear_model.BayesianRidge, sklearn.model_selection.GroupKFold,memory variant better,[scikit-learn]22388:8scikit-learn:0.19.2Individual
sklearn.preprocessing.StandardScaler, sklearn.naive_bayes.GaussianNB,time baseline better,[scikit-learn]24967:5scikit-learn:0.22Individual
sklearn.preprocessing.StandardScaler, sklearn.naive_bayes.GaussianNB,memory variant better,[scikit-learn]24967:8scikit-learn:0.19.2Individual
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.TimeSeriesSplit', ' sklearn.model_selection.KFold'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]1080:3, 1080:6, 1080:9, 1080:10, 1080:11, 1080:12, 1080:13, 1080:14scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.TimeSeriesSplit', ' sklearn.model_selection.KFold'}memory baseline better,score inconsistent[pandas, scikit-learn]1080:16, 1080:17, 1080:18, 1080:19, 1080:21, 1080:23, 1080:24, 1080:25, 1080:26, 1080:28, 1080:30, 1080:31, 1080:32, 1080:34scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.TimeSeriesSplit', ' sklearn.model_selection.KFold'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]1080:20scikit-learn:0.24.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.TimeSeriesSplit', ' sklearn.model_selection.KFold'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]1080:27, 1080:33, 1080:35, 1080:37, 1080:38, 1080:39, 1080:40, 1080:41, 1080:42scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]1097:2, 1097:3, 1097:5, 1097:7, 1097:8, 1097:10, 1097:11, 1097:15, 1097:16, 1097:25, 1097:27, 1097:29, 1097:31, 1097:32scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.24.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]1097:4, 1097:6, 1097:9, 1097:13, 1097:17, 1097:18, 1097:19, 1097:20, 1097:33, 1097:34, 1097:35scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[lightgbm, scikit-learn]1097:12, 1097:14, 1097:21, 1097:22, 1097:23, 1097:24, 1097:26, 1097:28, 1097:30scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]1097:36, 1097:37, 1097:43, 1097:46, 1097:47scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[lightgbm, scikit-learn]1097:38, 1097:41, 1097:42, 1097:44, 1097:45scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:1.0.1, scikit-learn:0.20.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]1097:39, 1097:40, 1097:48, 1097:49scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time baseline better,score inconsistent[lightgbm, scikit-learn]1098:2, 1098:9, 1098:17, 1098:23, 1098:25, 1098:30, 1098:49scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time variant better,score inconsistent[lightgbm, scikit-learn]1098:3, 1098:5, 1098:8, 1098:11, 1098:12, 1098:29, 1098:33scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time variant better,[lightgbm, scikit-learn]1098:4, 1098:32scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[lightgbm, scikit-learn]1098:6, 1098:13, 1098:14scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,[lightgbm, scikit-learn]1098:7scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time baseline better,[lightgbm, scikit-learn]1098:18, 1098:24, 1098:26scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}score inconsistent[lightgbm, scikit-learn]1098:19, 1098:22, 1098:31, 1098:42scikit-learn:0.23.2, scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]1098:20, 1098:21, 1098:27, 1098:28scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory variant better,[lightgbm, scikit-learn]1098:34scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,[lightgbm, scikit-learn]1098:35scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]1098:36, 1098:39, 1098:40, 1098:45, 1098:46, 1098:47scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]1098:37, 1098:38, 1098:41, 1098:43, 1098:44scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, scikit-learn]1098:48scikit-learn:0.24.2Type A
{' lightgbm.train', ' imblearn.over_sampling.SMOTE', 'lightgbm.Dataset'}time baseline better,memory baseline better,score inconsistent[imbalanced-learn, lightgbm]1118:1, 1118:6, 1118:7, 1118:8, 1118:9, 1118:11, 1118:14lightgbm:3.3.1, lightgbm:2.2.3, lightgbm:2.1.2, lightgbm:3.2.1, lightgbm:3.0.0Type A
{'category_encoders.WOEEncoder', ' lightgbm.Dataset', ' lightgbm.train'}time baseline better,memory variant better,score inconsistent[category_encoders, lightgbm]1118:1, 1118:2, 1118:3, 1118:4, 1118:6, 1118:7lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.2.3, lightgbm:2.1.2Type A
{' lightgbm.train', ' imblearn.over_sampling.SMOTE', 'lightgbm.Dataset'}memory baseline better,score inconsistent[imbalanced-learn, lightgbm]1118:2, 1118:3, 1118:4, 1118:10, 1118:13lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.2.3Type A
{' lightgbm.train', ' imblearn.over_sampling.SMOTE', 'lightgbm.Dataset'}memory baseline better,[imbalanced-learn, lightgbm]1118:5lightgbm:2.3.1Type A
{'category_encoders.WOEEncoder', ' lightgbm.Dataset', ' lightgbm.train'}time baseline better,memory variant better,[category_encoders, lightgbm]1118:5lightgbm:2.3.1Type A
{'category_encoders.WOEEncoder', ' lightgbm.Dataset', ' lightgbm.train'}time variant better,memory baseline better,score inconsistent[category_encoders, lightgbm]1118:8, 1118:9, 1118:10, 1118:11, 1118:13, 1118:14, 1118:15, 1118:16, 1118:17, 1118:18, 1118:20, 1118:21, 1118:23, 1118:25, 1118:27, 1118:28, 1118:29, 1118:30, 1118:31, 1118:32, 1118:35lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.2.3, lightgbm:2.1.2Type A
{' lightgbm.train', ' imblearn.over_sampling.SMOTE', 'lightgbm.Dataset'}time variant better,memory baseline better,[imbalanced-learn, lightgbm]1118:12lightgbm:2.3.1Type A
{'category_encoders.WOEEncoder', ' lightgbm.Dataset', ' lightgbm.train'}time variant better,memory baseline better,[category_encoders, lightgbm]1118:12, 1118:19, 1118:26, 1118:33lightgbm:2.3.1Type A
{'category_encoders.WOEEncoder', ' lightgbm.Dataset', ' lightgbm.train'}time variant better,score inconsistent[category_encoders, lightgbm]1118:22, 1118:24lightgbm:3.3.1, lightgbm:3.1.1Type A
{'category_encoders.WOEEncoder', ' lightgbm.Dataset', ' lightgbm.train'}memory baseline better,score inconsistent[category_encoders, lightgbm]1118:34lightgbm:2.2.3Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]1127:1, 1127:2, 1127:3, 1127:4, 1127:5, 1127:6, 1127:7scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}memory variant better,score inconsistent[lightgbm, numpy]1127:1, 1127:4, 1127:7, 1127:10, 1127:13, 1127:16, 1465:12, 1465:15, 16744:1, 16744:4, 16744:7, 16744:10numpy:1.19.5, numpy:1.17.4Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}time baseline better,memory variant better,score inconsistent[numpy, scikit-learn]1127:2, 1127:4, 1127:5, 1127:6scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time variant better,memory baseline better,score inconsistent[lightgbm, numpy]1127:2, 1127:14, 1127:17, 1465:20numpy:1.19.5, numpy:1.18.5Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}memory variant better,score inconsistent[numpy, scikit-learn]1127:3, 1127:7scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time variant better,memory baseline better,[lightgbm, numpy]1127:3numpy:1.19.5Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}memory baseline better,score inconsistent[lightgbm, numpy]1127:5, 1127:8, 1127:11, 1127:15, 1127:18, 1127:20, 1127:21, 1465:17, 16744:2, 16744:3, 16744:5, 16744:6numpy:1.19.5, numpy:1.18.5Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}memory baseline better,[lightgbm, numpy]1127:6, 1127:9, 1127:12numpy:1.19.5Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}memory baseline better,score inconsistent[numpy, scikit-learn]1127:8scikit-learn:1.0.1Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]1127:8, 1127:9, 1127:10, 1127:11, 1127:12, 1127:13, 1127:14scikit-learn:1.0.1Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]1127:9, 1127:10, 1127:11, 1127:12, 1127:13, 1127:14scikit-learn:1.0.1Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}time baseline better,memory baseline better,[numpy, scikit-learn]1127:15, 1127:16, 1127:17, 1127:18, 1127:20, 1127:21scikit-learn:1.0.1Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}time variant better,memory baseline better,[numpy, scikit-learn]1127:15, 1127:16, 1127:17, 1127:18, 1127:19, 1127:20, 1127:21scikit-learn:1.0.1Type A
{' sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.preprocessing.LabelEncoder', 'sklearn.decomposition.PCA'}memory baseline better,[numpy, scikit-learn]1127:19scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time variant better,memory variant better,score inconsistent[lightgbm, numpy]1127:19, 1465:18numpy:1.17.4, numpy:1.19.5Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[lightgbm, xgboost]1165:2, 1165:3, 1165:4, 1165:5, 1165:6, 1165:12xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, xgboost]1165:7, 1165:14xgboost:0.90Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}time variant better,memory variant better,[lightgbm, xgboost]1165:8xgboost:1.5.1Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}memory variant better,[lightgbm, xgboost]1165:9, 1165:41, 1165:47xgboost:1.4.2, xgboost:1.0.2, xgboost:1.1.1Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[lightgbm, xgboost]1165:13xgboost:1.0.2Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}memory baseline better,[lightgbm, xgboost]1165:15, 1165:20, 1165:26, 1165:27, 1165:34, 1165:39, 1165:40, 1165:48xgboost:1.5.1, xgboost:1.0.2, xgboost:1.1.1, xgboost:1.2.1Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}time variant better,[lightgbm, xgboost]1165:16, 1165:18, 1165:23, 1165:24, 1165:29, 1165:30, 1165:31, 1165:32, 1165:36, 1165:37, 1165:43, 1165:44xgboost:1.4.2, xgboost:1.2.1, xgboost:1.3.3, xgboost:1.5.1Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[lightgbm, xgboost]1165:17, 1165:22, 1165:25, 1165:38, 1165:45, 1165:46xgboost:1.3.3, xgboost:1.5.1, xgboost:1.2.1Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[lightgbm, xgboost]1165:21, 1165:35, 1165:42xgboost:0.90Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}score inconsistent[lightgbm, xgboost]1165:28xgboost:0.90Type A
{'lightgbm.train', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[lightgbm, xgboost]1165:49xgboost:0.90Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time variant better,score inconsistent[lightgbm, scikit-learn]1205:2, 1205:31, 1205:35, 1205:42scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[lightgbm, scikit-learn]1205:3, 1205:9, 1205:10, 1205:17, 1205:21, 1205:24, 1205:38scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]1205:4, 1205:11, 1205:25, 1205:29, 1205:30, 1205:32scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.20.3Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[lightgbm, scikit-learn]1205:5, 1205:6, 1205:20scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time baseline better,score inconsistent[lightgbm, scikit-learn]1205:7, 1205:14, 1205:28scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[lightgbm, scikit-learn]1205:8, 1205:16, 1205:18, 1205:22, 1205:23, 1205:39scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]1205:12, 1205:13, 1205:26, 1205:27scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]1205:15, 1205:36, 1205:37scikit-learn:0.19.2, scikit-learn:0.20.3Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]1205:33, 1205:34, 1205:40, 1205:41scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,[lightgbm, scikit-learn]1205:43, 1205:44, 1205:45, 1205:46scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[lightgbm, scikit-learn]1205:47, 1205:48scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' lightgbm.LGBMClassifier', 'sklearn.model_selection.TimeSeriesSplit', ' sklearn.preprocessing.LabelEncoder'}time variant better,[lightgbm, scikit-learn]1205:49scikit-learn:1.0.1Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]1255:1, 1255:2, 1255:3, 1255:4, 1255:5, 1255:8, 1255:9, 1255:10, 1255:11, 1255:12, 1255:15, 1255:16, 1255:17, 1255:18, 1255:19, 1255:22, 1255:23, 1255:24, 1255:25, 1255:26, 1255:32scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[lightgbm, scikit-learn]1255:6, 1255:7, 1255:13, 1255:14, 1255:20, 1255:21, 1255:27, 1255:28, 1255:29, 1255:30, 1255:31, 1255:33, 1255:34, 1255:35scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.23.2Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, scikit-learn]1255:36, 1255:37, 1255:38, 1255:39, 1255:40, 1255:41, 1255:42, 1255:43, 1255:44, 1255:45, 1255:46, 1255:47, 1255:48, 1255:49scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time baseline better,score inconsistent[lightgbm, numpy]1465:1, 1465:4, 1465:7, 1465:13, 16744:14, 16744:17, 16744:20, 16744:21numpy:1.19.5, numpy:1.17.4, numpy:1.18.5Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time baseline better,memory baseline better,score inconsistent[lightgbm, numpy]1465:2, 1465:5, 1465:8, 1465:11, 1465:14numpy:1.19.5, numpy:1.18.5Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}score inconsistent[lightgbm, numpy]1465:3, 1465:6, 1465:10, 1465:16, 16744:8, 16744:9, 16744:11, 16744:12, 16744:15, 16744:18numpy:1.19.5, numpy:1.17.4, numpy:1.18.5Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time baseline better,memory variant better,score inconsistent[lightgbm, numpy]1465:9, 1465:21, 16744:13, 16744:16, 16744:19numpy:1.19.5, numpy:1.17.4Type A
{' lightgbm.Dataset', ' lightgbm.train', 'numpy'}time variant better,score inconsistent[lightgbm, numpy]1465:19numpy:1.17.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time baseline better,memory variant better,score inconsistent[lightgbm, pandas]1510:1, 1510:3, 1510:13, 1510:15, 1511:25, 1511:27, 1511:28, 1511:29, 17654:1, 17654:8, 17654:13, 17654:20, 17654:25, 17654:32, 17655:1, 17655:2, 17655:14, 17655:15, 17655:17, 17655:18, 17655:20, 17700:1, 17700:6, 17700:7, 17700:8, 17700:13, 17700:14, 17700:15, 17700:16, 17700:21, 17700:22, 17700:26, 17700:27, 17700:28, 17700:29pandas:1.2.4, pandas:1.0.5, pandas:0.25.3, pandas:0.24.2, pandas:1.1.5Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time baseline better,score inconsistent[lightgbm, pandas]1510:2, 1510:4, 1510:5, 1510:10, 1510:14, 1511:26, 17655:4pandas:1.2.4, pandas:0.25.3, pandas:1.1.5Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time variant better,memory variant better,score inconsistent[lightgbm, pandas]1510:7, 1510:16, 1510:17, 1510:19, 1510:21, 1510:22, 1510:23, 1511:1, 1511:7, 1511:9, 1511:10, 1511:13, 1511:15, 1511:22, 17654:2, 17654:7, 17654:19, 17654:26, 17654:31, 17655:3, 17655:6, 17655:7, 17655:9, 17655:10, 17655:11, 17655:13, 17655:16, 17655:19, 17700:3, 17700:4, 17700:5, 17700:10, 17700:11, 17700:12, 17700:17, 17700:19, 17700:24, 17700:25pandas:1.2.4, pandas:0.25.3, pandas:0.24.2, pandas:1.0.5, pandas:1.1.5, pandas:0.23.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}score inconsistent[lightgbm, pandas]1510:8, 1510:26, 1511:5, 1511:8, 1511:14, 1511:20pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}memory variant better,score inconsistent[lightgbm, pandas]1510:9, 1510:11, 1510:25, 1510:27, 1510:28, 1510:29, 1511:11, 1511:16, 1511:17, 1511:19, 1511:21, 1511:23, 17654:14, 17655:5, 17700:2, 17700:9, 17700:18, 17700:20, 17700:23, 17700:30pandas:1.0.5, pandas:0.24.2, pandas:1.2.4, pandas:0.25.3, pandas:1.1.5, pandas:0.23.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time variant better,score inconsistent[lightgbm, pandas]1510:20, 1511:2, 1511:3, 1511:4, 17655:8, 17655:12pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}memory baseline better,score inconsistent[lightgbm, pandas]1510:31, 1510:32, 1510:33, 1510:34, 1510:35, 1510:37, 1510:38, 1510:39, 1510:40, 1510:41, 17654:10, 17654:18, 17700:33, 17700:39pandas:1.2.4, pandas:1.1.5, pandas:1.0.5, pandas:0.25.3, pandas:0.24.2, pandas:0.23.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time baseline better,memory baseline better,score inconsistent[lightgbm, pandas]1511:31, 1511:32, 1511:33, 1511:34, 1511:35, 1511:37, 1511:38, 1511:39, 1511:40, 1511:41, 17654:4, 17654:5, 17654:9, 17654:12, 17654:16, 17654:17, 17654:21, 17654:24, 17654:28, 17654:29, 17654:33, 17654:36, 17655:21, 17655:23, 17655:24, 17700:34, 17700:35, 17700:36, 17700:40, 17700:41, 17700:42pandas:1.2.4, pandas:1.1.5, pandas:1.0.5, pandas:0.25.3, pandas:0.24.2, pandas:0.23.4Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]1549:2, 1549:10, 1576:2, 1576:3, 1660:2, 1660:3, 1660:9, 1660:10, 1660:11scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]1549:3, 1549:11, 1576:10, 1576:11scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,score inconsistent[numpy, scikit-learn]1549:4, 1549:5, 1549:6, 1549:7, 1576:15, 1660:1, 1660:4, 1660:5, 1660:6, 1660:7, 1660:12, 1660:13scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}memory variant better,score inconsistent[numpy, scikit-learn]1549:8, 1549:20, 1549:21, 1549:23, 1549:24, 1576:8, 1576:17, 1576:20, 1576:21, 1576:24, 1660:16, 1660:20, 1660:22, 1660:23scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}score inconsistent[numpy, scikit-learn]1549:9, 1549:12, 1549:13, 1549:14, 1549:15, 1549:16, 1549:17, 1549:22, 1576:1, 1576:4, 1576:5, 1576:6, 1576:7, 1576:13, 1576:16, 1576:22, 1660:14, 1660:15, 1660:17scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}memory baseline better,score inconsistent[numpy, scikit-learn]1549:18, 1549:19, 1576:14, 1576:18, 1576:19, 1660:18, 1660:19scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}time variant better,score inconsistent[numpy, scikit-learn]1576:9, 1576:12scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,memory variant better,score inconsistent[numpy, scikit-learn]1576:23, 1660:8scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'sklearn.preprocessing.StandardScaler', 'numpy'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]1660:21, 1660:24scikit-learn:0.22, scikit-learn:0.19.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[pandas, scikit-learn]3126:2, 3126:4scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory variant better,[pandas, scikit-learn]3126:3, 3126:9, 3126:10, 3126:11, 3126:12, 3126:17, 3126:18, 3126:21, 3126:25, 3126:26, 3126:28, 3126:29, 3126:33, 3126:34, 3126:45, 3359:4, 3359:6, 3359:7, 3359:8, 3359:12, 3359:13, 3359:14, 3359:16, 3359:20, 3359:24, 3359:28, 3359:29, 3359:30, 3359:32, 3359:36, 3359:40scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,[pandas, scikit-learn]3126:5, 3126:13, 3126:19, 3126:20, 3126:27, 3126:35, 3126:36, 3126:37, 3126:41, 3126:42, 3126:43, 3126:44, 3359:5, 3359:21, 3359:22, 3359:37scikit-learn:0.22, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.21.3Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory baseline better,[pandas, scikit-learn]3126:6, 3126:7, 3126:8, 3126:14, 3126:15, 3126:16, 3126:22, 3126:31, 3126:32, 3359:2, 3359:10, 3359:19, 3359:26, 3359:34, 3359:35scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[pandas, scikit-learn]3126:23, 3126:24, 3126:38, 3126:39, 3126:40, 3126:48, 3359:3, 3359:11, 3359:18scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[pandas, scikit-learn]3126:30, 3126:46, 3126:47, 3359:27scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.23.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}memory variant better,score inconsistent[pandas, scikit-learn]3177:1, 3177:2, 3177:3, 3177:6, 3177:9, 3177:10, 3177:11, 3177:13, 3177:15, 3177:19, 3177:21, 3177:22, 3177:24scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}time baseline better,memory variant better,[pandas, scikit-learn]3177:4, 3177:8scikit-learn:1.0.1Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}memory variant better,[pandas, scikit-learn]3177:5, 3177:12, 3177:14, 3177:16, 3177:20, 3177:23scikit-learn:1.0.1Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]3177:7, 3177:17, 3177:18scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}memory baseline better,score inconsistent[pandas, scikit-learn]3177:25, 3177:27, 3177:28, 3177:30, 3177:32, 3177:33, 3177:34, 3177:39, 3177:42, 3177:43, 3177:45, 3177:46, 3177:47scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}memory baseline better,[pandas, scikit-learn]3177:26, 3177:29, 3177:31, 3177:35, 3177:37, 3177:38, 3177:41, 3177:44scikit-learn:1.0.1, scikit-learn:0.22Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]3177:36, 3177:40scikit-learn:1.0.1Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.model_selection.KFold'}time baseline better,memory baseline better,[pandas, scikit-learn]3177:48scikit-learn:1.0.1Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.KFold', ' sklearn.preprocessing.RobustScaler', ' sklearn.preprocessing.LabelEncoder', 'numpy'}memory baseline better,score inconsistent[numpy, scikit-learn]3190:1, 3190:2, 3190:10, 3190:11, 3190:12, 3190:19scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.KFold', ' sklearn.preprocessing.RobustScaler', ' sklearn.preprocessing.LabelEncoder', 'numpy'}memory baseline better,[numpy, scikit-learn]3190:3, 3190:9, 3190:13, 3190:17, 3190:18, 3190:20, 3190:21scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.KFold', ' sklearn.preprocessing.RobustScaler', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time variant better,score inconsistent[numpy, scikit-learn]3190:6, 3190:16, 3190:24scikit-learn:1.0.1Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.KFold', ' sklearn.preprocessing.RobustScaler', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]3190:7, 3190:14, 3190:15, 3190:23scikit-learn:1.0.1Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.KFold', ' sklearn.preprocessing.RobustScaler', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time variant better,[numpy, scikit-learn]3190:8scikit-learn:1.0.1Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.KFold', ' sklearn.preprocessing.RobustScaler', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time variant better,memory baseline better,[numpy, scikit-learn]3190:22scikit-learn:1.0.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}time variant better,score inconsistent[pandas, scikit-learn]3222:2, 3222:34, 3222:35, 3222:42, 3222:43scikit-learn:1.0.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]3222:4, 3222:5, 3222:12, 3222:13, 3222:14, 3222:15, 3222:16, 3222:17, 3222:20, 3222:22, 3222:24scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}memory variant better,score inconsistent[pandas, scikit-learn]3222:6, 3222:7, 3222:8, 3222:9, 3222:21, 3222:28, 3222:29, 3222:32, 3222:33scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}score inconsistent[pandas, scikit-learn]3222:10, 3222:11, 3222:26, 3222:27scikit-learn:1.0.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}time baseline better,score inconsistent[pandas, scikit-learn]3222:18, 3222:19scikit-learn:1.0.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}memory variant better,[pandas, scikit-learn]3222:23scikit-learn:1.0.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.preprocessing.StandardScaler', ' sklearn.preprocessing.MinMaxScaler'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]3222:25, 3222:30, 3222:31, 3222:36, 3222:37, 3222:38, 3222:39, 3222:40, 3222:41, 3222:44, 3222:45, 3222:46, 3222:47, 3222:48scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'numpy', ' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory variant better,[numpy, scikit-learn]3286:2, 3286:3, 3286:8, 3286:9scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{'numpy', ' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' sklearn.linear_model.LogisticRegression'}time variant better,memory baseline better,[numpy, scikit-learn]3286:6, 3286:7, 3286:13, 3286:14, 3286:20, 3286:21scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'numpy', ' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' sklearn.linear_model.LogisticRegression'}memory variant better,[numpy, scikit-learn]3286:10, 3286:15, 3286:16, 3286:17scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.20.3Type A
{'sklearn.linear_model.ElasticNet', 'numpy', ' sklearn.metrics.log_loss', ' sklearn.model_selection.GroupKFold'}memory baseline better,[numpy, scikit-learn]3352:2, 3352:3scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'sklearn.linear_model.ElasticNet', 'numpy', ' sklearn.metrics.log_loss', ' sklearn.model_selection.GroupKFold'}time baseline better,[numpy, scikit-learn]3352:5scikit-learn:0.22Type A
{'sklearn.linear_model.ElasticNet', 'numpy', ' sklearn.metrics.log_loss', ' sklearn.model_selection.GroupKFold'}time baseline better,memory baseline better,[numpy, scikit-learn]3352:6scikit-learn:0.21.3Type A
{'sklearn.linear_model.ElasticNet', 'numpy', ' sklearn.metrics.log_loss', ' sklearn.model_selection.GroupKFold'}time variant better,memory baseline better,[numpy, scikit-learn]3352:7scikit-learn:0.20.3Type A
{'sklearn.linear_model.ElasticNet', 'numpy', ' sklearn.metrics.log_loss', ' sklearn.model_selection.GroupKFold'}time variant better,[numpy, scikit-learn]3352:8scikit-learn:0.19.2Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,[pandas, scikit-learn]3359:23scikit-learn:0.20.3Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[pandas, scikit-learn]3359:41, 3359:42, 3359:43, 3359:46, 3359:47scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{' sklearn.decomposition.PCA', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}score inconsistent[pandas, scikit-learn]3359:44, 3359:45, 3359:48scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time variant better,memory baseline better,[pandas, scikit-learn]3399:2, 3399:3, 3399:4, 3399:8, 3399:14, 3399:36scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time baseline better,memory baseline better,[pandas, scikit-learn]3399:5, 3399:6, 3399:7, 3399:10, 3399:12, 3399:13, 3399:16scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time baseline better,[pandas, scikit-learn]3399:9scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time variant better,[pandas, scikit-learn]3399:11, 3399:18, 3399:21, 3399:23, 3399:24, 3399:33, 3399:35, 3399:37scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]3399:15scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]3399:17scikit-learn:0.24.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time variant better,memory variant better,[pandas, scikit-learn]3399:25, 3399:28scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}memory variant better,[pandas, scikit-learn]3399:26, 3399:31, 3399:42, 3399:43, 3399:47scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}memory baseline better,[pandas, scikit-learn]3399:30, 3399:32, 3399:38scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time variant better,score inconsistent[pandas, scikit-learn]3399:34scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}memory variant better,score inconsistent[pandas, scikit-learn]3399:41scikit-learn:0.22Type A
{'pandas', ' sklearn.preprocessing.StandardScaler'}time baseline better,memory variant better,[pandas, scikit-learn]3399:44, 3399:45, 3399:46, 3399:48scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{' tensorflow.random.set_seed', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', 'numpy', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}time variant better,memory baseline better,score inconsistent[numpy, tensorflow]3440:1, 3440:2, 3440:3tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}time variant better,memory baseline better,score inconsistent[pandas, tensorflow]3440:1, 3440:2, 3440:5, 3440:6tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.1.0, tensorflow:1.15.2Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}time baseline better,memory baseline better,score inconsistent[pandas, tensorflow]3440:3tensorflow:2.3.1Type A
{' tensorflow.random.set_seed', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', 'numpy', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}time variant better,memory variant better,score inconsistent[numpy, tensorflow]3440:4, 3440:5, 3440:6, 3440:7, 3440:8, 3440:9tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.14.0, tensorflow:1.13.1Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}memory baseline better,score inconsistent[pandas, tensorflow]3440:4tensorflow:2.2.0Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}memory variant better,score inconsistent[pandas, tensorflow]3440:7, 3440:9, 3440:12, 3440:13, 3440:16, 3440:18, 3440:19, 3440:20, 3440:21, 3440:22, 3440:23, 3440:24tensorflow:2.0.0, tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Activation'}score inconsistent[pandas, tensorflow]3440:8, 3440:10, 3440:11, 3440:14, 3440:15, 3440:17tensorflow:1.14.0, tensorflow:2.4.1, tensorflow:2.3.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]3464:2, 3464:13, 3464:17, 3464:22, 3464:23, 3464:24, 3464:25, 3464:26, 3464:30, 3464:32, 3464:33, 3464:35, 3464:36, 3464:37, 3464:39, 3464:40, 3464:42, 3464:43, 3464:44, 3464:45, 3464:46, 3464:47scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]3464:3, 3464:4, 3464:5, 3464:6, 3464:7, 3464:8, 3464:9, 3464:10, 3464:11, 3464:14, 3464:15, 3464:16, 3464:19, 3464:20, 3464:21, 3464:27, 3464:29, 3464:31, 3464:34, 3464:38scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,[pandas, scikit-learn]3464:12, 3464:28scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory variant better,[pandas, scikit-learn]3464:18, 3464:41, 3464:48scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]3474:2, 3474:18, 3474:19scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}memory baseline better,score inconsistent[numpy, scikit-learn]3474:3, 3474:10scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]3474:4, 3474:5, 3474:7scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}memory variant better,score inconsistent[numpy, scikit-learn]3474:6scikit-learn:0.24.2Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}score inconsistent[numpy, scikit-learn]3474:9, 3474:12, 3474:14, 3474:17scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]3474:11scikit-learn:0.22.1Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}time baseline better,score inconsistent[numpy, scikit-learn]3474:13scikit-learn:0.22Type A
{'sklearn.preprocessing.OneHotEncoder', 'numpy'}time variant better,score inconsistent[numpy, scikit-learn]3474:15, 3474:20, 3474:21, 3474:22, 3474:23scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'numpy', ' xgboost.XGBClassifier'}memory variant better,[numpy, xgboost]3486:1, 3486:15xgboost:1.5.1Type A
{'numpy', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[numpy, xgboost]3486:2, 3486:9, 3486:16xgboost:1.4.2Type A
{'numpy', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[numpy, xgboost]3486:3, 3486:10, 3486:17xgboost:1.3.3Type A
{'numpy', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[numpy, xgboost]3486:4, 3486:11, 3486:18xgboost:1.2.1Type A
{'numpy', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[numpy, xgboost]3486:5, 3486:12, 3486:19xgboost:1.1.1Type A
{'numpy', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[numpy, xgboost]3486:8xgboost:1.5.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.KFold'}memory baseline better,[pandas, scikit-learn]3513:3, 3513:7, 3513:10, 3513:11, 3513:12, 3513:20, 3513:23, 3513:26, 3513:32, 3513:34, 3513:36, 3513:37, 3513:38, 3513:42scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.KFold'}memory variant better,[pandas, scikit-learn]3513:8, 3513:14, 3513:16, 3513:17, 3513:18, 3513:21, 3513:25, 3513:28, 3513:29, 3513:33, 3513:35, 3513:39, 3513:40, 3513:43, 3513:45scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}score inconsistent[pandas, tensorflow]3517:1, 3517:3, 3517:5tensorflow:2.7.0, tensorflow:2.3.1, tensorflow:2.1.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time baseline better,score inconsistent[pandas, tensorflow]3517:2, 3517:4, 3517:6tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:1.15.2Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time variant better,[pandas, tensorflow]3517:7, 3517:10, 3517:16tensorflow:2.0.0, tensorflow:2.4.1, tensorflow:2.3.1Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time baseline better,memory variant better,[pandas, tensorflow]3517:12tensorflow:2.4.1Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time baseline better,[pandas, tensorflow]3517:14, 3517:15tensorflow:2.3.1Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}memory baseline better,[pandas, tensorflow]3517:19, 3517:21, 3517:22, 3517:23, 3517:24tensorflow:2.2.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time variant better,memory baseline better,[pandas, tensorflow]3517:20tensorflow:2.2.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time variant better,memory variant better,score inconsistent[pandas, tensorflow]3517:25, 3517:27, 3517:29, 3517:31, 3517:43tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.14.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}memory variant better,score inconsistent[pandas, tensorflow]3517:26, 3517:30, 3517:32, 3517:33, 3517:34, 3517:35, 3517:36, 3517:37, 3517:38, 3517:39, 3517:40, 3517:41, 3517:42, 3517:44, 3517:45, 3517:46, 3517:47, 3517:49, 3517:50, 3517:51, 3517:52tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.14.0, tensorflow:1.13.1Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.Sequential'}time baseline better,memory variant better,score inconsistent[pandas, tensorflow]3517:28, 3517:48, 3517:53, 3517:54tensorflow:2.1.0, tensorflow:1.14.0, tensorflow:1.13.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}time variant better,score inconsistent[lightgbm, scikit-learn]8226:1, 8226:22, 8226:25scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.22.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]8226:2, 8226:3, 8226:5, 8226:6, 8226:7, 8226:23, 8226:24, 8226:26, 8226:27scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}score inconsistent[lightgbm, scikit-learn]8226:4scikit-learn:1.0.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}time variant better,[lightgbm, scikit-learn]8226:8, 8226:11, 8226:15, 8226:18scikit-learn:0.19.2, scikit-learn:0.22.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}memory baseline better,[lightgbm, scikit-learn]8226:9, 8226:12, 8226:20, 8226:21, 8226:34, 8226:35, 8226:37, 8226:40, 8226:41, 8226:42scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,[lightgbm, scikit-learn]8226:10, 8226:13, 8226:14, 8226:16, 8226:17, 8226:19scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.23.2Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, scikit-learn]8226:28scikit-learn:1.0.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,[lightgbm, scikit-learn]8226:30, 8226:31, 8226:33, 8226:38, 8226:44, 8226:45, 8226:47, 8226:48, 8226:49scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.preprocessing.MinMaxScaler', ' sklearn.preprocessing.RobustScaler', ' lightgbm.LGBMClassifier'}time baseline better,[lightgbm, scikit-learn]8226:43, 8226:46scikit-learn:0.19.2, scikit-learn:0.22.1Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}memory variant better,score inconsistent[catboost, lightgbm]8471:1, 8471:2, 8471:8, 8471:9, 8471:15, 8471:16lightgbm:3.3.1, lightgbm:3.2.1Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}time baseline better,memory variant better,score inconsistent[catboost, lightgbm]8471:3, 8471:4, 8471:10, 8471:11, 8471:17, 8471:18, 8471:24, 8471:25, 8471:31, 8471:32, 8471:38, 8471:39, 8471:45, 8471:46, 8471:52, 8471:53, 8471:59, 8471:60, 8471:66, 8471:67, 8471:73, 8471:74lightgbm:3.1.1, lightgbm:3.0.0Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}time baseline better,memory variant better,[catboost, lightgbm]8471:5lightgbm:2.3.1Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}memory baseline better,score inconsistent[catboost, lightgbm]8471:6, 8471:13, 8471:14lightgbm:2.2.3, lightgbm:2.1.2Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}time variant better,memory baseline better,score inconsistent[catboost, lightgbm]8471:7, 8471:20, 8471:21, 8471:27, 8471:28, 8471:34, 8471:35, 8471:41, 8471:42, 8471:48, 8471:49, 8471:55, 8471:56, 8471:62, 8471:63, 8471:69, 8471:70, 8471:76, 8471:77lightgbm:2.1.2, lightgbm:2.2.3Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}memory variant better,[catboost, lightgbm]8471:12lightgbm:2.3.1Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}time variant better,memory variant better,[catboost, lightgbm]8471:19, 8471:26, 8471:33, 8471:40, 8471:47, 8471:54, 8471:61, 8471:68, 8471:75lightgbm:2.3.1Type A
{' lightgbm.LGBMClassifier', 'catboost.CatBoostClassifier'}time variant better,memory variant better,score inconsistent[catboost, lightgbm]8471:22, 8471:23, 8471:29, 8471:30, 8471:36, 8471:37, 8471:43, 8471:44, 8471:50, 8471:51, 8471:57, 8471:58, 8471:64, 8471:65, 8471:71, 8471:72lightgbm:3.3.1, lightgbm:3.2.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]8473:1, 8473:7, 8473:8, 8473:13, 8473:16, 8473:19, 8473:26, 8473:27, 8473:28, 8473:29, 8473:32scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,[lightgbm, scikit-learn]8473:2, 8473:14, 8473:21, 8473:22, 8473:24, 8473:33scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.23.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory variant better,[lightgbm, scikit-learn]8473:3, 8473:5, 8473:10, 8473:18, 8473:23, 8473:30scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.20.3Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]8473:4, 8473:15, 8473:20, 8473:31, 8473:34, 8473:35scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.21.3Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,[lightgbm, scikit-learn]8473:6, 8473:9, 8473:11, 8473:12, 8473:25scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[lightgbm, scikit-learn]8473:17scikit-learn:0.21.3Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]8473:36, 8473:37, 8473:39, 8473:41, 8473:43, 8473:45, 8473:47, 8473:48scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.23.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,[lightgbm, scikit-learn]8473:38, 8473:42scikit-learn:0.21.3, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]8473:40, 8473:49scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[lightgbm, scikit-learn]8473:44, 8473:46scikit-learn:0.20.3, scikit-learn:0.22.1Type A
{'pandas', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, pandas]8479:1, 8479:8, 24980:6, 24980:42, 25038:5, 25038:6, 25038:11, 25038:12pandas:1.2.4, pandas:1.1.5Type A
{'pandas', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,score inconsistent[lightgbm, pandas]8479:2, 8479:7, 8479:13, 8479:19, 8479:25, 8479:31, 8479:37, 24980:5, 24980:11, 24980:12, 24980:18, 24980:30, 24980:36, 25038:17, 25038:18, 25038:23, 25038:24, 25038:29, 25038:30, 25038:35, 25038:36, 25038:41, 25038:42pandas:1.2.4, pandas:1.1.5Type A
{'pandas', ' lightgbm.LGBMClassifier'}time variant better,score inconsistent[lightgbm, pandas]8479:3, 8479:4, 8479:9, 8479:15, 8479:16, 8479:22, 8479:26, 8479:28, 8479:32, 8479:34, 8479:38, 24980:16, 24980:17, 24980:22, 24980:23, 24980:41pandas:1.2.4, pandas:1.0.5, pandas:0.25.3, pandas:1.1.5Type A
{'pandas', ' lightgbm.LGBMClassifier'}time baseline better,score inconsistent[lightgbm, pandas]8479:5, 8479:11, 8479:23, 24980:4, 24980:8, 24980:14, 24980:20, 24980:29, 24980:33, 24980:35, 24980:39, 25000:28pandas:1.2.4, pandas:0.24.2, pandas:1.1.5, pandas:0.25.3, pandas:1.0.5Type A
{'pandas', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, pandas]8479:6, 8479:12, 8479:18, 8479:24, 8479:30, 8479:36, 8479:41, 8479:42, 24980:38pandas:1.2.4, pandas:0.23.4, pandas:0.24.2Type A
{'pandas', ' lightgbm.LGBMClassifier'}score inconsistent[lightgbm, pandas]8479:10, 8479:14, 8479:17, 8479:20, 8479:21, 24980:2, 24980:3, 24980:9, 24980:10, 24980:15, 24980:21, 24980:27, 25038:32, 25038:38pandas:0.25.3, pandas:1.1.5, pandas:0.24.2, pandas:1.0.5, pandas:1.2.4Type A
{'pandas', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,score inconsistent[lightgbm, pandas]8479:27, 8479:33, 8479:39, 8479:40, 24980:1, 24980:25, 24980:26, 24980:31, 24980:32, 24980:40pandas:1.0.5, pandas:0.25.3, pandas:1.2.4, pandas:0.23.4, pandas:0.24.2Type A
{'pandas', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[lightgbm, pandas]8479:29, 8479:35, 24980:7, 24980:13, 24980:19, 24980:28, 24980:34, 24980:37, 25038:1, 25038:2, 25038:3, 25038:4, 25038:7, 25038:8, 25038:9, 25038:10, 25038:13, 25038:14, 25038:15, 25038:16, 25038:19, 25038:20, 25038:21, 25038:22, 25038:25, 25038:26, 25038:27, 25038:28, 25038:31, 25038:33, 25038:34, 25038:37, 25038:39, 25038:40pandas:0.24.2, pandas:1.2.4, pandas:0.23.4, pandas:1.0.5, pandas:0.25.3Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Add'}memory baseline better,[pandas, tensorflow]8559:2, 8559:3, 8559:4, 8559:5tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Add'}time baseline better,[pandas, tensorflow]8559:23tensorflow:2.2.0Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Add'}memory variant better,[pandas, tensorflow]8559:25, 8559:26, 8559:27, 8559:28, 8559:29tensorflow:2.1.0Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Add'}memory variant better,score inconsistent[pandas, tensorflow]8559:37, 8559:39, 8559:40tensorflow:2.0.0Type A
{' tensorflow.random.set_seed', 'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Add'}time baseline better,memory variant better,score inconsistent[pandas, tensorflow]8559:38, 8559:41tensorflow:2.0.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}time variant better,[pandas, tensorflow]8692:4, 8692:8, 8692:15, 8692:16, 8692:17, 8692:19, 8692:20tensorflow:2.2.0, tensorflow:1.14.0, tensorflow:2.3.1Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}time variant better,memory variant better,[pandas, tensorflow]8692:7tensorflow:2.0.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}time baseline better,[pandas, tensorflow]8692:9, 8692:14, 8692:22tensorflow:1.13.1, tensorflow:2.3.1, tensorflow:2.2.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}memory baseline better,[pandas, tensorflow]8692:25, 8692:29, 8692:37, 8692:38, 8692:39, 8692:40, 8692:41tensorflow:2.1.0, tensorflow:2.0.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}time variant better,memory baseline better,[pandas, tensorflow]8692:26, 8692:27tensorflow:2.1.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}time baseline better,memory baseline better,[pandas, tensorflow]8692:28tensorflow:2.1.0Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}time baseline better,memory variant better,[pandas, tensorflow]8692:31, 8692:34, 8692:35tensorflow:1.15.2Type A
{'pandas', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Input'}memory variant better,[pandas, tensorflow]8692:32, 8692:33, 8692:43, 8692:44, 8692:45, 8692:46, 8692:47tensorflow:1.15.2, tensorflow:1.14.0Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.linear_model.Ridge'}time variant better,[numpy, scikit-learn]10541:15scikit-learn:0.20.3Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.linear_model.Ridge'}memory baseline better,[numpy, scikit-learn]10541:16scikit-learn:0.19.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'nltk.tokenize.sent_tokenize', ' nltk.tokenize.word_tokenize'}time baseline better,score inconsistent[lightgbm, nltk]10587:1, 10587:2, 10587:3, 10587:4, 10587:7nltk:3.6.2Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.word_tokenize', ' nltk.tokenize.sent_tokenize', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}memory variant better,score inconsistent[nltk, numpy, scikit-learn]10587:2, 10587:3, 10587:4, 10587:9, 10587:10, 10587:11, 10587:15, 10587:17, 10587:18scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.19.2Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.word_tokenize', ' nltk.tokenize.sent_tokenize', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}memory baseline better,score inconsistent[nltk, numpy, scikit-learn]10587:5, 10587:6, 10587:12, 10587:13, 10587:19scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'nltk.tokenize.sent_tokenize', ' nltk.tokenize.word_tokenize'}score inconsistent[lightgbm, nltk]10587:5, 10587:6nltk:3.6.2Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.word_tokenize', ' nltk.tokenize.sent_tokenize', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}time baseline better,score inconsistent[nltk, numpy, scikit-learn]10587:7scikit-learn:1.0.1Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.word_tokenize', ' nltk.tokenize.sent_tokenize', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}time baseline better,memory variant better,score inconsistent[nltk, numpy, scikit-learn]10587:8scikit-learn:0.19.2Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}memory variant better,score inconsistent[numpy, scikit-learn]10587:11scikit-learn:0.22.1Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]10587:12, 10587:13, 10587:19, 10587:20scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.word_tokenize', ' nltk.tokenize.sent_tokenize', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}score inconsistent[nltk, numpy, scikit-learn]10587:14, 10587:16, 10587:21scikit-learn:1.0.1, scikit-learn:0.20.3Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}time variant better,score inconsistent[numpy, scikit-learn]10587:14, 10587:21scikit-learn:1.0.1Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]10587:15, 10587:16, 10587:17, 10587:18scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{' sklearn.model_selection.KFold', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.word_tokenize', ' nltk.tokenize.sent_tokenize', 'numpy', ' sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer'}time baseline better,memory baseline better,score inconsistent[nltk, numpy, scikit-learn]10587:20scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', 'spacy.load'}time baseline better,[lightgbm, spacy]10737:2spacy:3.0.6Type A
{' lightgbm.LGBMRegressor', 'spacy.load'}memory variant better,[lightgbm, spacy]10737:7spacy:3.0.6Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.model_selection.train_test_split'}memory baseline better,[numpy, scikit-learn]10862:1, 10862:2, 10862:3, 10862:9, 10862:14scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.model_selection.train_test_split'}time variant better,[numpy, scikit-learn]10862:5scikit-learn:0.22Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[numpy, scikit-learn]10862:6, 10862:10, 10862:11scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.model_selection.train_test_split'}time baseline better,[numpy, scikit-learn]10862:19, 10862:22scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]10878:4, 10878:11, 10878:25scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]10878:5, 10878:6, 10878:19, 10878:26, 10878:27scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}score inconsistent[lightgbm, scikit-learn]10878:7scikit-learn:1.0.1Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}memory baseline better,score inconsistent[lightgbm, scikit-learn]10878:12, 10878:20, 10878:33, 10878:34, 10878:40, 10878:41, 10878:47, 10878:48scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]10878:13scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}memory variant better,score inconsistent[lightgbm, scikit-learn]10878:14, 10878:18, 10878:21, 10878:28, 10878:32, 10878:35, 10878:46, 10878:49scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{' lightgbm.LGBMRegressor', ' sklearn.feature_extraction.text.TfidfVectorizer', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]10878:39, 10878:42scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}time variant better,memory baseline better,[catboost, lightgbm]10886:2lightgbm:3.3.1Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}time baseline better,memory baseline better,[catboost, lightgbm]10886:3, 10886:5lightgbm:3.3.1Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}memory baseline better,[catboost, lightgbm]10886:4lightgbm:3.3.1Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}time variant better,[catboost, lightgbm]10886:7, 10886:22, 10886:24, 10886:32lightgbm:3.3.1, lightgbm:3.1.1, lightgbm:3.0.0Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}time baseline better,[catboost, lightgbm]10886:9, 10886:11, 10886:12, 10886:17, 10886:25, 10886:26lightgbm:3.3.1, lightgbm:2.3.1, lightgbm:3.1.1, lightgbm:3.0.0Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}time baseline better,memory variant better,[catboost, lightgbm]10886:13, 10886:14, 10886:21, 10886:34, 10886:35lightgbm:2.2.3, lightgbm:2.1.2Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}memory variant better,[catboost, lightgbm]10886:20, 10886:28lightgbm:2.2.3, lightgbm:2.1.2Type A
{' lightgbm.plot_importance', ' catboost.train', ' lightgbm.LGBMRegressor', 'catboost.Pool'}time variant better,memory variant better,[catboost, lightgbm]10886:27lightgbm:2.2.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}memory variant better,[pandas, scikit-learn]15000:7, 15000:16scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}time variant better,memory variant better,[pandas, scikit-learn]15000:8, 15000:14, 15000:15scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}time baseline better,memory baseline better,[pandas, scikit-learn]15000:22, 15000:23scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}memory baseline better,[pandas, scikit-learn]15000:30, 15000:38, 15000:39scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}time variant better,memory baseline better,[pandas, scikit-learn]15000:31scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}time variant better,[pandas, scikit-learn]15000:32scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.feature_extraction.text.TfidfVectorizer'}time baseline better,[pandas, scikit-learn]15000:40, 15000:47scikit-learn:0.19.2, scikit-learn:0.20.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}time variant better,memory baseline better,[numpy, scikit-learn]15010:1, 15010:2, 15010:9, 15010:10scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}memory variant better,[numpy, scikit-learn]15010:4, 15010:12, 15010:16scikit-learn:0.22.1, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}time variant better,memory variant better,[numpy, scikit-learn]15010:5, 15010:8scikit-learn:0.22, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}time variant better,[numpy, scikit-learn]15010:6, 15010:7scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}time baseline better,memory variant better,[numpy, scikit-learn]15010:13, 15010:20, 15010:21, 15010:24scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}time baseline better,[numpy, scikit-learn]15010:14, 15010:15, 15010:19, 15010:22, 15010:23scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.TruncatedSVD', ' sklearn.neighbors.KNeighborsClassifier', 'numpy'}time baseline better,memory baseline better,[numpy, scikit-learn]15010:17, 15010:18scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' torch.optim.SGD', 'torch.nn.CrossEntropyLoss', ' torch.max', ' torch.save', ' torch.load', ' torch.as_tensor', ' torch.nn.functional.max_pool2d', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.Conv2d', ' torch.nn.Dropout2d', ' torch.no_grad', ' torch.sum', ' torch.nn.functional.dropout', 'numpy'}memory variant better,score inconsistent[numpy, torch]15533:1torch:1.9.0Type A
{' torch.optim.SGD', 'torch.nn.CrossEntropyLoss', ' torch.max', ' torch.save', ' torch.load', ' torch.as_tensor', ' torch.nn.functional.max_pool2d', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.Conv2d', ' torch.nn.Dropout2d', ' torch.no_grad', ' torch.sum', ' torch.nn.functional.dropout', 'numpy'}time variant better,score inconsistent[numpy, torch]15533:2torch:1.8.1Type A
{' torch.optim.SGD', 'torch.nn.CrossEntropyLoss', ' torch.max', ' torch.save', ' torch.load', ' torch.as_tensor', ' torch.nn.functional.max_pool2d', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.Conv2d', ' torch.nn.Dropout2d', ' torch.no_grad', ' torch.sum', ' torch.nn.functional.dropout', 'numpy'}time variant better,memory variant better,score inconsistent[numpy, torch]15533:4, 15533:5, 15533:6torch:1.8.1Type A
{' torch.optim.SGD', 'torch.nn.CrossEntropyLoss', ' torch.max', ' torch.save', ' torch.load', ' torch.as_tensor', ' torch.nn.functional.max_pool2d', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.Conv2d', ' torch.nn.Dropout2d', ' torch.no_grad', ' torch.sum', ' torch.nn.functional.dropout', 'numpy'}memory baseline better,score inconsistent[numpy, torch]15533:7, 15533:8, 15533:9torch:1.7.1, torch:1.8.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:1, 15672:2, 15672:14, 15672:15torchvision:0.10.0, torchvision:0.9.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}memory baseline better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:3, 15672:23, 15672:26, 15672:35, 15672:58torchvision:0.8.2, torchvision:0.10.0, torchvision:0.9.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time variant better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:4, 15672:5, 15672:6, 15672:7, 15672:33, 15672:39, 15672:41torchvision:0.10.0, torchvision:0.9.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:8, 15672:28, 15672:29, 15672:30, 15672:32, 15672:40, 15672:44, 15672:45, 15672:49, 15672:52, 15672:53, 15672:54, 15672:63, 15672:64, 15672:65torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:9, 15672:10, 15672:11, 15672:12, 15672:13, 15672:17, 15672:18, 15672:19, 15672:20, 15672:21, 15672:22, 15672:27, 15672:34, 15672:42, 15672:43torchvision:0.10.0, torchvision:0.9.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}score inconsistent[numpy, scikit-learn, torch, torchvision]15672:16, 15672:38torchvision:0.10.0, torchvision:0.9.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time baseline better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:24, 15672:25, 15672:46, 15672:47torchvision:0.10.0, torchvision:0.9.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time baseline better,memory variant better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:36, 15672:37, 15672:56, 15672:57, 15672:60torchvision:0.9.1, torchvision:0.8.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}memory variant better,score inconsistent[numpy, scikit-learn, torch, torchvision]15672:48, 15672:61, 15672:62torchvision:0.9.1, torchvision:0.8.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time variant better,memory baseline better,[numpy, scikit-learn, torch, torchvision]15672:50, 15672:66, 15672:67torchvision:0.8.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time variant better,[numpy, scikit-learn, torch, torchvision]15672:51torchvision:0.8.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time variant better,memory variant better,[numpy, scikit-learn, torch, torchvision]15672:55, 15672:68, 15672:69, 15672:70, 15672:71, 15672:72torchvision:0.8.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'sklearn.decomposition.PCA', ' sklearn.cluster.AgglomerativeClustering', ' torch.nn.CrossEntropyLoss', ' torch.max', ' sklearn.metrics.accuracy_score', ' torchvision.transforms.ToPILImage', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', ' torch.device', ' torch.nn.Relu', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' sklearn.model_selection.train_test_split', ' torchvision.transforms.ToTensor', ' torch.nn.Dropout2d', ' torch.nn.BatchNorm2d', ' sklearn.manifold.SpectralEmbedding', ' sklearn.discriminant_analysis.LinearDiscriminantAnalysis', ' torch.optim.Adam', 'numpy'}time baseline better,memory baseline better,[numpy, scikit-learn, torch, torchvision]15672:59torchvision:0.8.2Type A
{'keras.preprocessing.image.load_img', 'numpy', ' keras.preprocessing.image.img_to_array'}time baseline better,[keras, numpy]15707:5, 15707:6, 15707:7, 15707:8, 15707:9, 15707:11numpy:1.19.5, numpy:1.18.5Type A
{'keras.preprocessing.image.load_img', 'numpy', ' keras.preprocessing.image.img_to_array'}time variant better,[keras, numpy]15707:16, 15707:17, 15707:18numpy:1.18.5, numpy:1.19.5, numpy:1.17.4Type A
{'keras.preprocessing.image.load_img', 'numpy', ' keras.preprocessing.image.img_to_array'}memory baseline better,score inconsistent[keras, numpy]15707:19, 15707:21numpy:1.18.5, numpy:1.19.5Type A
{'keras.preprocessing.image.load_img', 'numpy', ' keras.preprocessing.image.img_to_array'}memory baseline better,[keras, numpy]15707:20numpy:1.19.5Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.datasets.make_classification', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time baseline better,[numpy, scikit-learn]16267:1, 16267:17, 16267:20scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.datasets.make_classification', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}memory baseline better,[numpy, scikit-learn]16267:2, 16267:3, 16267:10, 16267:11, 16267:18, 16267:19scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.datasets.make_classification', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time variant better,memory variant better,[numpy, scikit-learn]16267:4, 16267:5, 16267:7, 16267:15scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.datasets.make_classification', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}memory variant better,[numpy, scikit-learn]16267:6, 16267:14scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.datasets.make_classification', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time variant better,[numpy, scikit-learn]16267:13, 16267:22scikit-learn:0.22, scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.datasets.make_classification', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time baseline better,memory variant better,[numpy, scikit-learn]16267:23scikit-learn:0.20.3Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time baseline better,score inconsistent[numpy, scikit-learn]16278:1scikit-learn:1.0.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}memory baseline better,score inconsistent[numpy, scikit-learn]16278:2, 16278:3, 16278:10, 16278:11, 16278:18, 16278:19scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}memory variant better,score inconsistent[numpy, scikit-learn]16278:4, 16278:5, 16278:16scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]16278:6, 16278:7, 16278:8, 16278:24scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}score inconsistent[numpy, scikit-learn]16278:9, 16278:12, 16278:13, 16278:14, 16278:15, 16278:17, 16278:22, 16278:23scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy'}time variant better,score inconsistent[numpy, scikit-learn]16278:20, 16278:21scikit-learn:0.22.1, scikit-learn:0.22Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.cluster.KMeans', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.covariance.OAS'}score inconsistent[numpy, scikit-learn]16315:1, 16315:3, 16315:4, 16315:5, 16315:6, 16315:8, 16315:11, 16315:12, 16315:13, 16315:14, 16315:16, 16315:21, 16315:24scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.cluster.KMeans', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.covariance.OAS'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]16315:2, 16315:18scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.cluster.KMeans', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.covariance.OAS'}time variant better,score inconsistent[numpy, scikit-learn]16315:7, 16315:15, 16315:23scikit-learn:0.20.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.cluster.KMeans', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.covariance.OAS'}time baseline better,score inconsistent[numpy, scikit-learn]16315:9, 16315:20, 16315:22scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.cluster.KMeans', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.covariance.OAS'}memory baseline better,score inconsistent[numpy, scikit-learn]16315:10, 16315:19scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.cluster.KMeans', ' sklearn.mixture.GaussianMixture', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.covariance.OAS'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]16315:17scikit-learn:1.0.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,memory variant better,[numpy, scikit-learn]16320:1, 16320:2, 16320:15scikit-learn:0.19.2, scikit-learn:0.20.3Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,memory variant better,score inconsistent[numpy, scikit-learn]16320:3scikit-learn:0.21.3Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}memory variant better,[numpy, scikit-learn]16320:4, 16320:8scikit-learn:0.22.1, scikit-learn:0.19.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time variant better,[numpy, scikit-learn]16320:5, 16320:11, 16320:18scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time variant better,score inconsistent[numpy, scikit-learn]16320:10, 16320:17scikit-learn:0.21.3Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time variant better,memory baseline better,[numpy, scikit-learn]16320:12scikit-learn:0.23.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}memory baseline better,[numpy, scikit-learn]16320:13, 16320:19, 16320:21scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,memory baseline better,[numpy, scikit-learn]16320:14, 16320:20scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', 'numpy'}time baseline better,[numpy, scikit-learn]16320:16scikit-learn:0.20.3Type A
{' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.pipeline.Pipeline'}time variant better,[numpy, scikit-learn]16331:2, 16331:7, 16331:9, 16331:12, 16331:13, 16331:18, 16331:24, 16478:1, 16478:3, 16478:5, 16478:8scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.23.2Type A
{' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', 'numpy', ' sklearn.pipeline.Pipeline'}time baseline better,[numpy, scikit-learn]16331:3, 16331:5, 16331:8, 16331:10, 16331:15, 16331:16, 16331:19, 16331:23, 16478:6, 16478:10, 16478:13, 16478:17, 16478:18, 16478:19, 16478:20, 16478:22, 16478:23, 16478:24scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.StratifiedKFold'}memory baseline better,[pandas, scikit-learn]16377:2, 16377:3, 16377:4, 16377:5, 16377:10, 16377:11, 16377:12, 16377:13, 16377:18, 16377:19, 16377:20, 16377:21, 16377:26, 16377:27, 16377:28, 16377:29, 16377:34, 16377:35, 16377:36, 16377:37, 16377:42, 16377:43, 16377:44, 16377:45scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.StratifiedKFold'}memory baseline better,score inconsistent[pandas, scikit-learn]16377:6, 16377:7, 16377:14, 16377:15, 16377:22, 16377:23, 16377:30, 16377:31, 16377:38, 16377:39, 16377:46, 16377:47scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.StratifiedKFold'}memory variant better,score inconsistent[pandas, scikit-learn]16377:8, 16377:16, 16377:24, 16377:32, 16377:40, 16377:48scikit-learn:0.19.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.StratifiedKFold'}memory variant better,[pandas, scikit-learn]16377:9, 16377:17, 16377:25, 16377:33, 16377:41scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}memory baseline better,score inconsistent[lightgbm, scikit-learn]16426:2, 16426:3, 16426:9, 16426:10, 16426:16, 16426:17, 16426:23, 16426:24, 16426:30, 16426:31, 16426:37, 16426:38, 16426:44, 16426:48scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]16426:4, 16426:5, 16426:11, 16426:12, 16426:18, 16426:19, 16426:25, 16426:26, 16426:32, 16426:33, 16426:39, 16426:40, 16426:45, 16426:46, 16426:47scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]16426:6, 16426:13, 16426:20, 16426:27, 16426:34, 16426:41scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]16426:7, 16426:14, 16426:21, 16426:28, 16426:35, 16426:42, 16426:49scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}memory variant better,score inconsistent[lightgbm, scikit-learn]16426:8, 16426:15, 16426:22, 16426:29, 16426:36, 16426:43scikit-learn:0.19.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]16431:2, 16431:3, 16431:6, 16431:9, 16431:13, 16431:16, 16431:17, 16431:20, 16431:23, 16431:24, 16431:27scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.21.3Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}memory baseline better,score inconsistent[lightgbm, scikit-learn]16431:4, 16431:5, 16431:10, 16431:11, 16431:12, 16431:18, 16431:19, 16431:25, 16431:26, 16431:41scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]16431:7, 16431:8, 16431:14, 16431:21, 16431:22, 16431:28scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}memory variant better,score inconsistent[lightgbm, scikit-learn]16431:15, 16431:35, 16431:42, 16431:43, 16431:49scikit-learn:0.19.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]16431:29, 16431:36scikit-learn:0.19.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.feature_selection.VarianceThreshold', ' sklearn.neighbors.KNeighborsClassifier', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]16431:30, 16431:31, 16431:32, 16431:33, 16431:34, 16431:37, 16431:38, 16431:39, 16431:40, 16431:44, 16431:45, 16431:46, 16431:47, 16431:48scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold'}score inconsistent[pandas, scikit-learn]16442:2, 16442:3, 16442:4, 16442:7, 16442:8, 16442:9, 16442:10, 16442:11, 16442:13, 16442:14, 16442:16, 16442:19, 16442:21, 16442:22, 16442:23, 16442:25, 16442:27, 16442:28, 16442:31, 16442:32, 16442:33, 16442:36, 16442:37, 16442:39, 16442:40, 16442:41, 16442:45, 16442:47scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.train_test_split'}score inconsistent[pandas, scikit-learn]16459:11, 16459:12, 16459:13, 16459:14, 16459:15, 16459:16, 16459:19, 16459:22, 16459:23, 16459:24, 16459:25, 16459:26, 16459:27, 16459:28, 16459:29, 16459:30, 16459:31, 16459:32, 16459:33, 16459:34, 16459:36, 16459:37, 16459:38, 16459:39, 16459:41, 16459:46scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold'}memory baseline better,score inconsistent[pandas, scikit-learn]16472:2, 16472:3, 16472:4, 16472:5, 16472:7, 16472:11, 16472:12, 16472:13, 16472:14, 16472:15, 16472:18, 16472:19, 16472:20, 16472:21, 16472:23, 16472:26, 16472:27, 16472:29, 16472:35, 16472:36, 16472:37, 16472:39scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold'}memory baseline better,[pandas, scikit-learn]16472:6, 16472:10, 16472:22, 16472:28, 16472:30, 16472:31, 16472:34, 16472:38scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold'}memory variant better,score inconsistent[pandas, scikit-learn]16472:8, 16472:24, 16472:25, 16472:32, 16472:40scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold'}memory variant better,[pandas, scikit-learn]16472:9, 16472:16, 16472:17, 16472:33scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'numpy', 'catboost.CatBoostRegressor'}time variant better,memory variant better,[catboost, numpy]16717:1, 16717:4numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostRegressor'}time variant better,[catboost, numpy]16717:2, 16717:5, 16717:8numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostRegressor'}time variant better,memory baseline better,[catboost, numpy]16717:3, 16717:6, 16717:9numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostRegressor'}memory variant better,[catboost, numpy]16717:7, 16717:10, 16717:13, 16717:19numpy:1.19.5, numpy:1.17.4Type A
{'numpy', 'catboost.CatBoostRegressor'}memory baseline better,[catboost, numpy]16717:12, 16717:15, 16717:21numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostRegressor'}memory variant better,score inconsistent[catboost, numpy]16717:16numpy:1.17.4Type A
{'numpy', 'catboost.CatBoostRegressor'}time variant better,score inconsistent[catboost, numpy]16717:17numpy:1.18.5Type A
{'numpy', 'catboost.CatBoostRegressor'}memory baseline better,score inconsistent[catboost, numpy]16717:18numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostRegressor'}time baseline better,memory variant better,score inconsistent[catboost, numpy]16717:22, 16717:25, 16717:28, 16717:31numpy:1.17.4Type A
{'numpy', 'catboost.CatBoostRegressor'}time baseline better,score inconsistent[catboost, numpy]16717:23, 16717:26, 16717:29numpy:1.18.5Type A
{'numpy', 'catboost.CatBoostRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, numpy]16717:24, 16717:27, 16717:30, 16717:32, 16717:33numpy:1.19.5, numpy:1.18.5Type A
{'pandas', ' lightgbm.LGBMRegressor'}time variant better,score inconsistent[lightgbm, pandas]16732:1, 16732:7, 16732:13, 16732:19pandas:1.2.4Type A
{'pandas', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,score inconsistent[lightgbm, pandas]16732:2, 16732:3, 16732:8, 16732:20, 16732:21, 16732:26pandas:1.2.4, pandas:1.1.5, pandas:1.0.5Type A
{'pandas', ' lightgbm.LGBMRegressor'}memory variant better,score inconsistent[lightgbm, pandas]16732:4, 16732:9, 16732:10, 16732:14, 16732:15, 16732:17, 16732:22, 16732:28pandas:1.2.4, pandas:1.0.5, pandas:0.25.3, pandas:1.1.5, pandas:0.24.2Type A
{'pandas', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,score inconsistent[lightgbm, pandas]16732:5, 16732:6, 16732:11, 16732:12, 16732:16, 16732:18, 16732:23, 16732:24, 16732:27, 16732:29, 16732:30pandas:1.2.4, pandas:0.24.2, pandas:0.23.4, pandas:0.25.3, pandas:1.0.5Type A
{'pandas', ' lightgbm.LGBMRegressor'}time baseline better,score inconsistent[lightgbm, pandas]16732:25pandas:1.2.4Type A
{'pandas', ' lightgbm.LGBMRegressor'}memory baseline better,score inconsistent[lightgbm, pandas]16732:31, 16732:32, 16732:34, 16732:35, 16732:40pandas:1.2.4, pandas:1.1.5, pandas:0.25.3, pandas:0.24.2Type A
{'pandas', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,score inconsistent[lightgbm, pandas]16732:33, 16732:38pandas:1.0.5, pandas:1.1.5Type A
{'pandas', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,score inconsistent[lightgbm, pandas]16732:36, 16732:37, 16732:39, 16732:41, 16732:42pandas:0.23.4, pandas:1.2.4, pandas:1.0.5, pandas:0.24.2Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]16774:1, 16774:2, 16774:13, 16774:14scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}memory variant better,score inconsistent[pandas, scikit-learn]16774:3, 16774:5, 16774:7, 16774:8, 16774:9, 16774:15scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]16774:4, 16774:6, 16774:10, 16774:11, 16774:12, 16774:16scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}memory baseline better,score inconsistent[pandas, scikit-learn]16774:17, 16774:19, 16774:21, 16774:23, 16774:40, 16774:42, 16774:44scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]16774:18, 16774:20, 16774:22, 16774:24, 16774:25, 16774:26, 16774:27, 16774:30, 16774:31, 16774:32, 16774:33, 16774:34, 16774:35, 16774:36, 16774:37, 16774:38, 16774:39, 16774:47, 16774:48scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.20.3, scikit-learn:0.22Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]16774:28, 16774:29, 16774:41, 16774:43, 16774:45, 16774:46scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{'numpy', ' sklearn.linear_model.HuberRegressor', 'sklearn.preprocessing.PolynomialFeatures'}score inconsistent[numpy, scikit-learn]16819:1, 16819:6, 16819:8, 16819:9, 16819:10, 16819:18, 16819:22, 16819:23scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.20.3Type A
{'numpy', ' sklearn.linear_model.HuberRegressor', 'sklearn.preprocessing.PolynomialFeatures'}time baseline better,score inconsistent[numpy, scikit-learn]16819:2, 16819:7, 16819:14, 16819:17, 16819:24scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'numpy', ' sklearn.linear_model.HuberRegressor', 'sklearn.preprocessing.PolynomialFeatures'}time variant better,score inconsistent[numpy, scikit-learn]16819:15, 16819:16scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'numpy', 'sklearn.linear_model.LinearRegression'}time baseline better,score inconsistent[numpy, scikit-learn]16820:1, 16820:11, 16820:12scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{'numpy', 'sklearn.linear_model.LinearRegression'}score inconsistent[numpy, scikit-learn]16820:2, 16820:3, 16820:4, 16820:5, 16820:6, 16820:7, 16820:9, 16820:10, 16820:13, 16820:14, 16820:15, 16820:17, 16820:18, 16820:19, 16820:20, 16820:21, 16820:22, 16820:23scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1Type A
{'numpy', 'sklearn.linear_model.LinearRegression'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]16820:8scikit-learn:0.19.2Type A
{'numpy', 'sklearn.linear_model.LinearRegression'}memory baseline better,score inconsistent[numpy, scikit-learn]16820:16, 16820:24scikit-learn:0.19.2Type A
{'numpy', 'sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,[numpy, scikit-learn]16829:2, 16829:17, 16829:18scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'numpy', 'sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[numpy, scikit-learn]16829:3, 16829:13, 16829:19, 16829:21scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.23.2Type A
{'numpy', 'sklearn.preprocessing.LabelEncoder'}memory baseline better,[numpy, scikit-learn]16829:4, 16829:5, 16829:6, 16829:7, 16829:8, 16829:11, 16829:12, 16829:14, 16829:15, 16829:16, 16829:20, 16829:22, 16829:23, 16829:24scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.23.2Type A
{'numpy', 'sklearn.preprocessing.LabelEncoder'}memory variant better,[numpy, scikit-learn]16829:9, 16829:10scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.LinearRegression'}time baseline better,score inconsistent[pandas, scikit-learn]16831:1, 16831:3, 16831:5, 16831:17, 16831:19, 16831:25, 16831:28, 16831:30, 16831:31, 16831:33, 16831:34, 16831:36, 16831:37, 16831:39, 16831:41, 16831:42, 16831:43, 16831:44, 16831:45, 16831:46, 16831:47, 24413:29, 24413:34, 24413:41, 24413:44scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.LinearRegression'}time variant better,score inconsistent[pandas, scikit-learn]16831:2, 16831:4, 16831:6, 16831:7, 16831:9, 16831:12, 16831:15, 16831:18, 16831:20, 16831:21, 16831:23, 16831:26, 16831:27, 16831:29, 16831:35, 24413:1, 24413:2, 24413:4, 24413:5, 24413:6, 24413:7, 24413:11, 24413:12, 24413:13, 24413:14, 24413:15, 24413:18, 24413:21, 24413:22, 24413:23, 24413:31scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.linear_model.LinearRegression'}memory baseline better,score inconsistent[pandas, scikit-learn]16831:8, 24413:32scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LinearRegression'}score inconsistent[pandas, scikit-learn]16831:10, 16831:11, 16831:13, 16831:14, 16831:22, 16831:38, 24413:3, 24413:9, 24413:10, 24413:17, 24413:19, 24413:20, 24413:25, 24413:26, 24413:27, 24413:28, 24413:30, 24413:33, 24413:35, 24413:36, 24413:37, 24413:38, 24413:39, 24413:42, 24413:43, 24413:45, 24413:46, 24413:47scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LinearRegression'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]16831:16, 16831:40, 16831:48, 24413:40, 24413:48scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LinearRegression'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]16831:24, 16831:32, 24413:8, 24413:16, 24413:24scikit-learn:0.19.2Type A
{' cv2.GaussianBlur', ' cv2.addWeighted', ' cv2.circle', 'numpy', ' cv2.resize', ' cv2.imread', 'cv2.bitwise_and', ' cv2.cvtColor'}time variant better,memory baseline better,score inconsistent[numpy, opencv-python]17047:2, 17047:4, 17047:5, 17047:6, 17047:7, 17047:8, 17047:9, 17047:10, 17047:11, 17047:12, 17047:15, 17047:16, 17047:17, 17047:18, 17047:20, 17047:21, 17047:22, 17047:23, 17047:24, 17047:28opencv-python:4.5.1.48, opencv-python:4.4.0.46, opencv-python:4.3.0.36Type A
{' cv2.GaussianBlur', ' cv2.addWeighted', ' cv2.circle', 'numpy', ' cv2.resize', ' cv2.imread', 'cv2.bitwise_and', ' cv2.cvtColor'}memory baseline better,[numpy, opencv-python]17047:3opencv-python:4.5.1.48Type A
{' cv2.GaussianBlur', ' cv2.addWeighted', ' cv2.circle', 'numpy', ' cv2.resize', ' cv2.imread', 'cv2.bitwise_and', ' cv2.cvtColor'}time variant better,memory baseline better,[numpy, opencv-python]17047:13, 17047:14, 17047:19, 17047:25, 17047:26, 17047:27, 17047:29, 17047:30opencv-python:4.5.1.48Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[pandas, scikit-learn]17618:1, 17618:10, 17618:11, 17618:13, 17618:25, 17618:26, 17618:27, 17618:28, 17618:29, 17618:33, 17618:34, 17618:36, 17618:37, 17618:42, 17618:43, 17618:44, 17619:1, 17619:2, 17619:3, 17619:4, 17619:5, 17619:9, 17619:10, 17619:11, 17619:12, 17619:13, 17619:17, 17619:18, 17619:19, 17619:20, 17619:21, 17619:25, 17619:26, 17619:28, 17619:33, 17619:35, 17619:41, 17619:42, 17619:43, 17619:44, 17619:45scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]17618:2, 17618:3, 17618:5, 17618:9, 17618:12, 17618:17, 17618:19, 17618:21, 17618:35, 17618:41, 17618:45, 17619:27, 17619:29, 17619:34, 17619:36, 17619:37scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]17618:4, 17618:18, 17618:20scikit-learn:0.22.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]17618:6, 17618:23, 17618:39, 17619:22, 17619:38, 17619:46scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]17618:7, 17618:8, 17618:14, 17618:15, 17618:16, 17618:22, 17618:24, 17618:30, 17618:31, 17618:32, 17618:38, 17618:40, 17618:46, 17618:47, 17618:48, 17619:6, 17619:7, 17619:8, 17619:14, 17619:15, 17619:16, 17619:23, 17619:24, 17619:30, 17619:31, 17619:32, 17619:39, 17619:40, 17619:47, 17619:48scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]17626:1, 17626:2, 17626:3, 17626:4, 17626:22, 17627:3, 17627:22, 17627:23, 17737:4, 17737:15scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}memory baseline better,score inconsistent[pandas, scikit-learn]17626:5, 17626:8, 17627:4, 17627:8, 17627:17, 17737:1, 17737:5, 17737:6, 17737:8, 17737:18, 17737:23scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]17626:6, 17626:7, 17626:15, 17626:17, 17626:18, 17626:23, 17627:1, 17627:2, 17627:5, 17627:6, 17627:7, 17627:15, 17627:18, 17737:2, 17737:3, 17737:7, 17737:17, 17737:22scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}score inconsistent[pandas, scikit-learn]17626:9, 17626:13, 17626:20, 17626:24, 17626:28, 17627:9, 17627:11, 17627:13, 17627:14, 17627:30, 17737:13, 17737:14, 17737:20, 17737:21, 17737:24, 17737:25, 17737:26, 17737:31scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}time variant better,score inconsistent[pandas, scikit-learn]17626:10, 17626:16, 17626:27, 17627:10, 17627:16, 17627:29, 17737:9, 17737:19scikit-learn:0.24.2, scikit-learn:0.19.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}time baseline better,score inconsistent[pandas, scikit-learn]17626:11, 17626:12, 17626:14, 17626:19, 17626:21, 17626:25, 17626:26, 17626:29, 17626:30, 17626:31, 17627:12, 17627:19, 17627:20, 17627:21, 17627:24, 17627:25, 17627:26, 17627:27, 17627:28, 17627:31, 17737:10, 17737:11, 17737:12, 17737:16, 17737:27, 17737:28, 17737:29, 17737:30scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.cross_validate'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]17626:32, 17627:32, 17737:32scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[pandas, scikit-learn]17648:1, 17648:2, 17648:3, 17648:4, 17648:9, 17648:10, 17648:13, 17648:17, 17648:25, 17648:35, 17648:45scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]17648:5, 17648:11, 17648:12, 17648:26, 17648:27, 17648:36, 17648:37scikit-learn:0.22, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]17648:6, 17648:16scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[pandas, scikit-learn]17648:7, 17648:8, 17648:14, 17648:15, 17648:46scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]17648:18, 17648:19, 17648:20, 17648:21, 17648:28, 17648:29, 17648:33, 17648:34, 17648:41, 17648:42, 17648:43, 17648:44scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]17648:22, 17648:23, 17648:24, 17648:30, 17648:31, 17648:32, 17648:38, 17648:39, 17648:40, 17648:47, 17648:48scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'numpy', ' lightgbm.LGBMClassifier'}time variant better,score inconsistent[lightgbm, numpy]17649:2, 17649:4, 17649:6, 17649:7, 17649:9, 17649:10, 17649:12numpy:1.19.5, numpy:1.17.4Type A
{'numpy', ' lightgbm.LGBMClassifier'}time baseline better,score inconsistent[lightgbm, numpy]17649:3, 17649:11, 17649:14numpy:1.19.5, numpy:1.18.5Type A
{'numpy', ' lightgbm.LGBMClassifier'}score inconsistent[lightgbm, numpy]17649:5, 17649:8, 17649:13, 17649:15numpy:1.19.5, numpy:1.18.5, numpy:1.17.4Type A
{'numpy', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, numpy]17649:16, 17649:18, 17649:19, 17649:20, 17649:21numpy:1.17.4, numpy:1.19.5, numpy:1.18.5Type A
{'numpy', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,score inconsistent[lightgbm, numpy]17649:17numpy:1.18.5Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time variant better,memory baseline better,score inconsistent[lightgbm, pandas]17654:3, 17654:6, 17654:11, 17654:15, 17654:22, 17654:23, 17654:27, 17654:30, 17654:34, 17654:35, 17655:22, 17700:31, 17700:32, 17700:37, 17700:38pandas:1.2.4, pandas:0.24.2, pandas:1.0.5, pandas:0.25.3, pandas:0.23.4, pandas:1.1.5Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time baseline better,memory variant better,[lightgbm, pandas]17654:37, 24597:1, 24597:2, 24597:5, 24597:6, 24597:8, 24597:11, 24597:12, 24597:14, 24597:17, 24597:18, 24597:19, 24597:20, 24597:21, 24597:23, 24597:24, 24597:29pandas:1.2.4, pandas:1.1.5, pandas:0.24.2, pandas:0.23.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time variant better,memory variant better,[lightgbm, pandas]17654:38, 24597:9, 24597:13, 24597:25, 24597:26, 24597:27, 24597:30pandas:1.1.5, pandas:1.0.5, pandas:1.2.4, pandas:0.23.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time variant better,memory baseline better,[lightgbm, pandas]17654:39, 17654:42, 17655:25, 17655:28, 24597:41pandas:1.0.5, pandas:0.23.4, pandas:0.25.3, pandas:1.2.4, pandas:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time baseline better,memory baseline better,[lightgbm, pandas]17654:40, 17654:41, 17655:26, 17655:27, 24597:32, 24597:34, 24597:35, 24597:36, 24597:37, 24597:38, 24597:39, 24597:40pandas:0.25.3, pandas:0.24.2, pandas:1.0.5, pandas:1.1.5, pandas:1.2.4Type A
{' sklearn.utils.resample', 'pandas', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.ensemble.ExtraTreesClassifier', ' sklearn.linear_model.LogisticRegression', ' category_encoders.TargetEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.feature_extraction.FeatureHasher', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,[category_encoders, pandas, scikit-learn]17662:1, 17662:2, 17662:3, 17662:4, 17662:28, 17662:33, 17662:34, 17662:35, 17662:36scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'pandas', ' category_encoders.TargetEncoder'}time variant better,memory baseline better,score inconsistent[category_encoders, pandas]17662:2, 17662:5, 17662:10, 17662:13pandas:0.25.3, pandas:1.1.5Type A
{'pandas', ' category_encoders.TargetEncoder'}time variant better,memory variant better,score inconsistent[category_encoders, pandas]17662:3, 17662:4, 17662:7, 17662:8, 17662:11, 17662:12, 17662:15, 17662:16pandas:1.0.5, pandas:1.2.4Type A
{' sklearn.utils.resample', 'pandas', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.ensemble.ExtraTreesClassifier', ' sklearn.linear_model.LogisticRegression', ' category_encoders.TargetEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.feature_extraction.FeatureHasher', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,[category_encoders, pandas, scikit-learn]17662:5, 17662:6, 17662:13, 17662:14, 17662:29, 17662:31, 17662:37, 17662:38, 17662:39, 17662:40scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'pandas', ' category_encoders.TargetEncoder'}time variant better,memory baseline better,[category_encoders, pandas]17662:6, 17662:9, 17662:14pandas:1.1.5, pandas:0.25.3Type A
{' sklearn.utils.resample', 'pandas', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.ensemble.ExtraTreesClassifier', ' sklearn.linear_model.LogisticRegression', ' category_encoders.TargetEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.feature_extraction.FeatureHasher', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,[category_encoders, pandas, scikit-learn]17662:7, 17662:8, 17662:21, 17662:22, 17662:23, 17662:24, 17662:32scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' sklearn.utils.resample', 'pandas', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.ensemble.ExtraTreesClassifier', ' sklearn.linear_model.LogisticRegression', ' category_encoders.TargetEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.feature_extraction.FeatureHasher', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score'}time variant better,memory baseline better,[category_encoders, pandas, scikit-learn]17662:9, 17662:10, 17662:11, 17662:12, 17662:17, 17662:18, 17662:19, 17662:20, 17662:25, 17662:26, 17662:27scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' sklearn.utils.resample', 'pandas', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.ensemble.ExtraTreesClassifier', ' sklearn.linear_model.LogisticRegression', ' category_encoders.TargetEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.feature_extraction.FeatureHasher', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score'}memory variant better,[category_encoders, pandas, scikit-learn]17662:15, 17662:16, 17662:30scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'pandas', ' category_encoders.TargetEncoder'}time baseline better,memory baseline better,score inconsistent[category_encoders, pandas]17662:17, 17662:18pandas:0.25.3Type A
{'pandas', ' category_encoders.TargetEncoder'}time baseline better,memory variant better,[category_encoders, pandas]17662:19pandas:1.0.5Type A
{'pandas', ' category_encoders.TargetEncoder'}time baseline better,memory variant better,score inconsistent[category_encoders, pandas]17662:20pandas:1.0.5Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}memory variant better,score inconsistent[pandas, scikit-learn]17663:25, 17663:26, 17663:27, 17663:28scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]17663:29scikit-learn:0.22Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]17663:30, 17663:31, 17663:32scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]17663:33, 17663:41, 17663:42, 17663:43, 17663:44, 17663:45scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}memory baseline better,score inconsistent[pandas, scikit-learn]17663:34, 17663:35scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}score inconsistent[pandas, scikit-learn]17663:36, 17663:37scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,score inconsistent[pandas, scikit-learn]17663:38, 17663:39, 17663:40scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.model_selection.GridSearchCV', 'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]17663:46, 17663:47, 17663:48scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time variant better,[numpy, scikit-learn]17668:4, 17668:15, 17668:20, 17668:21scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.22Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time baseline better,[numpy, scikit-learn]17668:6, 17668:11scikit-learn:1.0.1, scikit-learn:0.23.2Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time baseline better,memory baseline better,[numpy, scikit-learn]17668:8, 17668:16scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}memory baseline better,[numpy, scikit-learn]17668:24scikit-learn:0.19.2Type A
{'pandas', ' xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[pandas, xgboost]17676:1, 17676:8, 17676:15, 17676:22, 17676:29, 17703:10, 17703:12, 17703:17, 17703:19, 17703:24, 17703:25, 17703:26, 17703:27, 24528:1, 24528:8, 24528:15, 24528:22xgboost:1.5.1, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.2.1, xgboost:1.0.2Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]17676:2, 17676:4, 17676:5, 17676:6, 17676:7, 17676:8, 17676:9, 17676:10, 17676:11, 17676:12, 17676:13, 17676:14, 17676:15, 17676:16, 17676:17, 17676:18, 17676:19, 17676:20, 17676:21, 17676:22, 17676:23, 17676:24, 17676:25, 17676:26, 17676:27, 17676:29, 17676:30, 17676:31, 17676:33, 17676:34, 17676:35, 17676:36, 17676:37, 17676:38, 17676:39, 17676:40, 17676:41, 17676:42, 17676:43, 17676:44, 17676:45, 17676:46, 17676:47scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' xgboost.XGBClassifier'}time variant better,score inconsistent[pandas, xgboost]17676:2, 17676:3, 17676:9, 17676:10, 17676:16, 17676:17, 17676:23, 17676:24, 17676:30, 17676:31, 17676:37, 17703:1, 17703:3, 17703:8, 24528:2, 24528:3, 24528:9, 24528:10, 24528:16, 24528:17, 24528:23xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]17676:3scikit-learn:1.0.1Type A
{'pandas', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[pandas, xgboost]17676:4, 17676:5, 17676:6, 17676:11, 17676:12, 17676:13, 17676:18, 17676:19, 17676:20, 17676:25, 17676:26, 17676:27, 17676:32, 17676:33, 24528:4, 24528:5, 24528:11, 24528:12, 24528:19, 24528:25, 24528:26, 24528:32xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{'pandas', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[pandas, xgboost]17676:7, 17676:14, 17676:21, 17676:28, 17676:35, 17676:39, 17676:40, 17676:41, 17676:42, 24528:7, 24528:14, 24528:21, 24528:28, 24528:35, 24528:42xgboost:0.90, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]17676:28, 17676:32, 17676:48scikit-learn:1.0.1, scikit-learn:0.20.3Type A
{'pandas', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[pandas, xgboost]17676:34, 24528:6, 24528:13, 24528:18, 24528:20, 24528:27, 24528:33, 24528:34, 24528:39, 24528:40, 24528:41xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type A
{'pandas', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[pandas, xgboost]17676:36, 17703:9, 17703:11, 17703:13, 17703:14, 17703:18, 17703:20, 17703:21, 17703:23, 17703:28, 24969:21xgboost:1.5.1, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90Type A
{'pandas', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[pandas, xgboost]17676:38, 17703:2, 17703:4, 17703:6, 17703:7, 17703:16xgboost:1.3.3, xgboost:1.5.1, xgboost:0.90, xgboost:1.4.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]17678:1, 17757:7, 17757:8scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}time baseline better,score inconsistent[pandas, scikit-learn]17678:2, 17678:32, 17757:10, 17757:24, 17757:32scikit-learn:0.24.2, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}memory variant better,score inconsistent[pandas, scikit-learn]17678:6, 17678:7, 17678:8, 17678:9, 17678:14, 17678:15, 17678:16, 17757:1, 17757:4, 17757:5, 17757:6, 17757:9, 17757:12, 17757:13, 17757:14, 17757:15, 17757:16scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}score inconsistent[pandas, scikit-learn]17678:10, 17678:24, 17757:2, 17757:3, 17757:11scikit-learn:0.24.2, scikit-learn:0.19.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}memory baseline better,score inconsistent[pandas, scikit-learn]17678:17, 17678:18, 17678:22, 17678:23, 17678:25, 17757:18, 17757:19, 17757:20, 17757:21, 17757:23scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]17678:26, 17678:30, 17678:31, 17757:17, 17757:22, 17757:25, 17757:26, 17757:27, 17757:28, 17757:29, 17757:30, 17757:31scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.naive_bayes.GaussianNB'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]17680:1, 17680:2, 17680:9, 17680:10, 17680:17, 17680:18, 17680:25, 17680:26, 17680:33, 17680:34, 17680:41, 17680:42scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.naive_bayes.GaussianNB'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]17680:3, 17680:4, 17680:5, 17680:11, 17680:12, 17680:13, 17680:19, 17680:20, 17680:21, 17680:27, 17680:28, 17680:29, 17680:35, 17680:36, 17680:37, 17680:43, 17680:44, 17680:45, 17681:6, 17681:7, 17681:8, 17681:14, 17681:15, 17681:16, 17681:22, 17681:23, 17681:24, 17681:30, 17681:31, 17681:32, 17681:38, 17681:39, 17681:40, 17681:46, 17681:47, 17681:48scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.naive_bayes.GaussianNB'}time variant better,memory variant better,[pandas, scikit-learn]17680:6, 17680:7, 17680:8, 17680:14, 17680:15, 17680:16, 17680:22, 17680:23, 17680:24, 17680:30, 17680:31, 17680:32, 17680:38, 17680:39, 17680:40, 17680:46, 17680:47, 17680:48, 17681:3, 17681:4, 17681:5, 17681:11, 17681:12, 17681:13, 17681:19, 17681:20, 17681:27, 17681:28, 17681:29, 17681:35, 17681:36, 17681:37, 17681:43, 17681:44, 17681:45scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.naive_bayes.GaussianNB'}time baseline better,memory baseline better,[pandas, scikit-learn]17681:1, 17681:2, 17681:9, 17681:10, 17681:17, 17681:18, 17681:25, 17681:26, 17681:33, 17681:34, 17681:41, 17681:42scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.neighbors.KNeighborsClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.naive_bayes.GaussianNB'}memory variant better,[pandas, scikit-learn]17681:21scikit-learn:0.22Type A
{'pandas', ' xgboost.XGBClassifier'}score inconsistent[pandas, xgboost]17703:5, 17703:15, 24528:24, 24528:30, 24528:31, 24528:37, 24528:38xgboost:1.5.1, xgboost:1.3.3, xgboost:1.4.2Type A
{'pandas', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[pandas, xgboost]17703:22, 24528:29, 24528:36, 24969:7, 24969:14, 24969:28, 24969:35, 24969:42xgboost:1.5.1, xgboost:0.90Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.OneHotEncoder', ' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]17730:3, 17730:28, 17730:31, 17730:33, 17730:34, 17730:35, 17730:38scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.OneHotEncoder', ' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[lightgbm, scikit-learn]17730:4, 17730:5, 17730:14, 17730:17, 17730:27, 17730:45scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.OneHotEncoder', ' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]17730:6, 17730:7, 17730:10, 17730:12, 17730:13, 17730:19, 17730:20, 17730:21, 17730:24, 17730:26scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.OneHotEncoder', ' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[lightgbm, scikit-learn]17730:11, 17730:25scikit-learn:0.22.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.OneHotEncoder', ' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split'}score inconsistent[lightgbm, scikit-learn]17730:18, 17730:41, 17730:46, 17730:49scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.OneHotEncoder', ' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[lightgbm, scikit-learn]17730:32, 17730:39, 17730:40, 17730:42, 17730:47, 17730:48scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}time baseline better,[category_encoders, lightgbm]17744:9, 17744:10, 17744:13, 17744:16, 17744:17, 17744:20lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:2.2.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}time variant better,[category_encoders, lightgbm]17744:11, 17744:15lightgbm:3.0.0, lightgbm:3.3.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}score inconsistent[category_encoders, lightgbm]17744:14, 17744:21lightgbm:2.1.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}time variant better,memory baseline better,[category_encoders, lightgbm]17744:22, 17744:34lightgbm:3.3.1, lightgbm:2.2.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}memory baseline better,[category_encoders, lightgbm]17744:23, 17744:25, 17744:26, 17744:27, 17744:30, 17744:31, 17744:33lightgbm:3.2.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:2.2.3, lightgbm:3.1.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}time baseline better,memory baseline better,[category_encoders, lightgbm]17744:24, 17744:29, 17744:32lightgbm:3.1.1, lightgbm:3.3.1, lightgbm:3.0.0Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.TargetEncoder'}memory baseline better,score inconsistent[category_encoders, lightgbm]17744:28, 17744:35lightgbm:2.1.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[lightgbm, scikit-learn]17753:1, 17753:3, 17753:29, 17753:36scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}score inconsistent[lightgbm, scikit-learn]17753:2, 17753:9, 17753:14, 17753:30, 17753:35scikit-learn:0.20.3, scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]17753:6, 17753:13, 17753:41, 17753:48scikit-learn:0.24.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[lightgbm, scikit-learn]17753:7, 17753:42, 17753:44, 17753:49scikit-learn:1.0.1, scikit-learn:0.20.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]17753:8, 17753:31, 17753:43, 17753:45scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]17753:10, 17753:15, 17753:17, 17753:22, 17753:24, 17753:38scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[lightgbm, scikit-learn]17753:16, 17753:21, 17753:23, 17753:28, 17753:37scikit-learn:0.20.3, scikit-learn:1.0.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]17753:20, 17753:27, 17753:34scikit-learn:0.24.2Type A
{' sklearn.metrics.classification_report', 'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}time variant better,memory baseline better,[pandas, scikit-learn]17755:1, 17755:2, 17755:7scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.20.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.metrics.classification_report', 'numpy', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory baseline better,[numpy, scikit-learn]17755:2scikit-learn:0.24.2Type A
{' sklearn.metrics.classification_report', 'pandas', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.roc_auc_score'}time variant better,[pandas, scikit-learn]17755:6scikit-learn:0.21.3Type A
{' torch.nn.functional.relu', ' torch.utils.data.TensorDataset', ' torch.nn.Linear', ' torch.utils.data.DataLoader', 'torch.nn.functional.log_softmax', ' torch.optim.SGD', ' torch.nn.Conv2d', ' torch.manual_seed', ' torch.nn.functional.nll_loss', ' torch.no_grad', ' torch.nn.functional.dropout', ' torch.nn.functional.max_pool2d', 'numpy', ' torch.utils.data.sampler.SubsetRandomSampler', ' torch.nn.Dropout2d', ' torch.tensor'}time variant better,[numpy, torch]17975:2, 17975:5torch:1.8.1Type A
{' torch.nn.functional.relu', ' torch.utils.data.TensorDataset', ' torch.nn.Linear', ' torch.utils.data.DataLoader', 'torch.nn.functional.log_softmax', ' torch.optim.SGD', ' torch.nn.Conv2d', ' torch.manual_seed', ' torch.nn.functional.nll_loss', ' torch.no_grad', ' torch.nn.functional.dropout', ' torch.nn.functional.max_pool2d', 'numpy', ' torch.utils.data.sampler.SubsetRandomSampler', ' torch.nn.Dropout2d', ' torch.tensor'}memory baseline better,score inconsistent[numpy, torch]17975:3, 17975:6, 17975:9torch:1.9.0Type A
{' torch.nn.functional.relu', ' torch.utils.data.TensorDataset', ' torch.nn.Linear', ' torch.utils.data.DataLoader', 'torch.nn.functional.log_softmax', ' torch.optim.SGD', ' torch.nn.Conv2d', ' torch.manual_seed', ' torch.nn.functional.nll_loss', ' torch.no_grad', ' torch.nn.functional.dropout', ' torch.nn.functional.max_pool2d', 'numpy', ' torch.utils.data.sampler.SubsetRandomSampler', ' torch.nn.Dropout2d', ' torch.tensor'}memory variant better,[numpy, torch]17975:4, 17975:7torch:1.7.1Type A
{' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.no_grad', ' torch.nn.Dropout', ' torch.nn.Conv2d', ' torch.nn.MaxPool2d', ' torch.max', 'numpy', ' torch.nn.functional.cross_entropy', 'torch.nn.AvgPool2d', ' torch.nn.BatchNorm1d', ' torch.nn.BatchNorm2d'}memory baseline better,[numpy, torch]18118:2, 18118:3torch:1.8.1, torch:1.7.1Type A
{' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.no_grad', ' torch.nn.Dropout', ' torch.nn.Conv2d', ' torch.nn.MaxPool2d', ' torch.max', 'numpy', ' torch.nn.functional.cross_entropy', 'torch.nn.AvgPool2d', ' torch.nn.BatchNorm1d', ' torch.nn.BatchNorm2d'}memory variant better,score inconsistent[numpy, torch]18118:4, 18118:9torch:1.8.1, torch:1.7.1Type A
{' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.no_grad', ' torch.nn.Dropout', ' torch.nn.Conv2d', ' torch.nn.MaxPool2d', ' torch.max', 'numpy', ' torch.nn.functional.cross_entropy', 'torch.nn.AvgPool2d', ' torch.nn.BatchNorm1d', ' torch.nn.BatchNorm2d'}score inconsistent[numpy, torch]18118:5, 18118:6torch:1.8.1Type A
{' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.no_grad', ' torch.nn.Dropout', ' torch.nn.Conv2d', ' torch.nn.MaxPool2d', ' torch.max', 'numpy', ' torch.nn.functional.cross_entropy', 'torch.nn.AvgPool2d', ' torch.nn.BatchNorm1d', ' torch.nn.BatchNorm2d'}time baseline better,memory variant better,[numpy, torch]18118:7torch:1.7.1Type A
{' torch.nn.functional.relu', ' torch.device', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.no_grad', ' torch.nn.Dropout', ' torch.nn.Conv2d', ' torch.nn.MaxPool2d', ' torch.max', 'numpy', ' torch.nn.functional.cross_entropy', 'torch.nn.AvgPool2d', ' torch.nn.BatchNorm1d', ' torch.nn.BatchNorm2d'}time baseline better,memory variant better,score inconsistent[numpy, torch]18118:8torch:1.7.1Type A
{' keras.layers.Conv2D', ' keras.layers.GlobalAveragePooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.MaxPooling2D', ' keras.layers.Dropout', 'numpy', ' tensorflow.keras.utils.to_categorical', ' keras.models.Sequential', ' keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[keras, numpy, tensorflow]18162:2, 18162:3tensorflow:2.4.1, tensorflow:2.3.1Type A
{' keras.layers.Conv2D', ' keras.layers.GlobalAveragePooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.MaxPooling2D', ' keras.layers.Dropout', 'numpy', ' tensorflow.keras.utils.to_categorical', ' keras.models.Sequential', ' keras.layers.Dense'}time baseline better,[keras, numpy, tensorflow]18162:4, 18162:5, 18162:6, 18162:9, 18162:11tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.0.0Type A
{' keras.layers.Conv2D', ' keras.layers.GlobalAveragePooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.MaxPooling2D', ' keras.layers.Dropout', 'numpy', ' tensorflow.keras.utils.to_categorical', ' keras.models.Sequential', ' keras.layers.Dense'}score inconsistent[keras, numpy, tensorflow]18162:12, 18162:13, 18162:14tensorflow:2.2.0Type A
{' keras.layers.Conv2D', ' keras.layers.GlobalAveragePooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.MaxPooling2D', ' keras.layers.Dropout', 'numpy', ' tensorflow.keras.utils.to_categorical', ' keras.models.Sequential', ' keras.layers.Dense'}time variant better,score inconsistent[keras, numpy, tensorflow]18162:18, 18162:19, 18162:20tensorflow:2.1.0Type A
{' keras.layers.Conv2D', ' keras.layers.GlobalAveragePooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.MaxPooling2D', ' keras.layers.Dropout', 'numpy', ' tensorflow.keras.utils.to_categorical', ' keras.models.Sequential', ' keras.layers.Dense'}time variant better,[keras, numpy, tensorflow]18162:24, 18162:25, 18162:26tensorflow:2.0.0Type A
{' sklearn.decomposition.TruncatedSVD', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.accuracy_score'}memory baseline better,[pandas, scikit-learn]18188:2scikit-learn:0.24.2Type A
{' sklearn.decomposition.TruncatedSVD', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[pandas, scikit-learn]18188:3scikit-learn:0.23.2Type A
{' sklearn.decomposition.TruncatedSVD', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.accuracy_score'}score inconsistent[pandas, scikit-learn]18188:4, 18188:5scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.decomposition.TruncatedSVD', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.metrics.accuracy_score'}memory variant better,[pandas, scikit-learn]18188:8scikit-learn:0.19.2Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[numpy, scikit-learn]18193:1, 18193:2, 18193:9, 18193:10, 18193:18scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[numpy, scikit-learn]18193:3, 18193:11, 18193:17, 18193:19scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}score inconsistent[numpy, scikit-learn]18193:4, 18193:12, 18193:21scikit-learn:0.22.1, scikit-learn:0.22Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[numpy, scikit-learn]18193:5, 18193:13scikit-learn:0.22Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[numpy, scikit-learn]18193:6, 18193:7, 18193:14, 18193:15scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]18193:8, 18193:16, 18193:22, 18193:24scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[numpy, scikit-learn]18193:20scikit-learn:0.22.1Type A
{'sklearn.neural_network.MLPClassifier', 'numpy', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]18193:23scikit-learn:0.20.3Type A
{' torch.matmul', ' torch.nn.CrossEntropyLoss', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', 'torch.nn.Relu', ' torch.nn.MaxPool3d', ' torch.nn.init.constant_', ' torch.device', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.nn.BatchNorm2d', ' torch.optim.Adam', ' torch.nn.Dropout', ' torch.no_grad', 'numpy', ' torch.nn.MaxPool1d'}time variant better,memory baseline better,score inconsistent[numpy, torch, torchvision]18268:1, 18268:3torchvision:0.10.0, torchvision:0.8.2Type A
{' torch.matmul', ' torch.nn.CrossEntropyLoss', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', 'torch.nn.Relu', ' torch.nn.MaxPool3d', ' torch.nn.init.constant_', ' torch.device', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.nn.BatchNorm2d', ' torch.optim.Adam', ' torch.nn.Dropout', ' torch.no_grad', 'numpy', ' torch.nn.MaxPool1d'}memory baseline better,[numpy, torch, torchvision]18268:2torchvision:0.9.1Type A
{' torch.matmul', ' torch.nn.CrossEntropyLoss', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', 'torch.nn.Relu', ' torch.nn.MaxPool3d', ' torch.nn.init.constant_', ' torch.device', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.nn.BatchNorm2d', ' torch.optim.Adam', ' torch.nn.Dropout', ' torch.no_grad', 'numpy', ' torch.nn.MaxPool1d'}time variant better,[numpy, torch, torchvision]18268:4, 18268:5torchvision:0.9.1Type A
{' torch.matmul', ' torch.nn.CrossEntropyLoss', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', 'torch.nn.Relu', ' torch.nn.MaxPool3d', ' torch.nn.init.constant_', ' torch.device', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.nn.BatchNorm2d', ' torch.optim.Adam', ' torch.nn.Dropout', ' torch.no_grad', 'numpy', ' torch.nn.MaxPool1d'}time baseline better,[numpy, torch, torchvision]18268:7torchvision:0.8.2Type A
{' torch.matmul', ' torch.nn.CrossEntropyLoss', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', 'torch.nn.Relu', ' torch.nn.MaxPool3d', ' torch.nn.init.constant_', ' torch.device', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.nn.BatchNorm2d', ' torch.optim.Adam', ' torch.nn.Dropout', ' torch.no_grad', 'numpy', ' torch.nn.MaxPool1d'}memory variant better,score inconsistent[numpy, torch, torchvision]18268:8torchvision:0.8.2Type A
{' torch.matmul', ' torch.nn.CrossEntropyLoss', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.MaxPool2d', 'torch.nn.Relu', ' torch.nn.MaxPool3d', ' torch.nn.init.constant_', ' torch.device', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.Compose', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.nn.BatchNorm2d', ' torch.optim.Adam', ' torch.nn.Dropout', ' torch.no_grad', 'numpy', ' torch.nn.MaxPool1d'}time baseline better,memory variant better,[numpy, torch, torchvision]18268:9torchvision:0.8.2Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}score inconsistent[numpy, tensorflow]18271:4, 18271:5, 18277:5, 18277:6tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}time variant better,score inconsistent[numpy, tensorflow]18271:6tensorflow:2.0.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}memory baseline better,score inconsistent[numpy, tensorflow]18271:7, 18271:8, 18271:9, 18277:8, 18277:10, 18277:11, 18277:12tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1, tensorflow:2.1.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}memory baseline better,[numpy, tensorflow]18271:10, 18271:11, 18271:12, 18277:7, 18277:9tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.13.1Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}time baseline better,memory variant better,score inconsistent[numpy, tensorflow]18271:16, 18271:17, 18271:18, 18271:19, 18271:20, 18271:21, 18277:17tensorflow:1.15.2, tensorflow:1.14.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}time baseline better,score inconsistent[numpy, tensorflow]18277:4tensorflow:2.2.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}time baseline better,memory variant better,[numpy, tensorflow]18277:16, 18277:18, 18277:19, 18277:21tensorflow:1.15.2, tensorflow:1.14.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}memory variant better,[numpy, tensorflow]18277:20tensorflow:1.14.0Type A
{' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Conv2D', 'shap', ' tensorflow.keras.layers.Input', 'numpy', ' tensorflow.keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.Sequential'}memory variant better,score inconsistent[numpy, tensorflow]18277:22, 18277:23, 18277:24tensorflow:1.13.1Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}time baseline better,score inconsistent[numpy, scikit-learn]18305:1, 18305:10scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}score inconsistent[numpy, scikit-learn]18305:2, 18305:6, 18305:9, 18305:11, 18305:14, 18305:19scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.23.2Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}time variant better,score inconsistent[numpy, scikit-learn]18305:3, 18305:22scikit-learn:0.23.2, scikit-learn:0.21.3Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}memory variant better,score inconsistent[numpy, scikit-learn]18305:4, 18305:5, 18305:20scikit-learn:0.22.1, scikit-learn:0.22Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]18305:7, 18305:23scikit-learn:0.20.3Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]18305:12, 18305:13, 18305:21scikit-learn:0.22.1, scikit-learn:0.22Type A
{'sklearn.decomposition.PCA', ' sklearn.model_selection.train_test_split', ' sklearn.svm.SVC', 'numpy', ' sklearn.metrics.confusion_matrix'}memory baseline better,score inconsistent[numpy, scikit-learn]18305:15, 18305:17, 18305:18scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.MaxPool2D', 'numpy', ' keras.models.Sequential', 'keras.layers.Dropout', ' keras.layers.Dense'}time baseline better,score inconsistent[keras, numpy, tensorflow]18324:13tensorflow:2.4.1Type A
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.MaxPool2D', 'numpy', ' keras.models.Sequential', 'keras.layers.Dropout', ' keras.layers.Dense'}time baseline better,[keras, numpy, tensorflow]18324:14tensorflow:2.4.1Type A
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.MaxPool2D', 'numpy', ' keras.models.Sequential', 'keras.layers.Dropout', ' keras.layers.Dense'}time variant better,[keras, numpy, tensorflow]18324:15tensorflow:2.4.1Type A
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.MaxPool2D', 'numpy', ' keras.models.Sequential', 'keras.layers.Dropout', ' keras.layers.Dense'}score inconsistent[keras, numpy, tensorflow]18324:16tensorflow:2.4.1Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}memory variant better,[numpy, scikit-learn]18649:1, 18649:4, 18649:5, 18649:12, 18649:16, 18649:24scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}time baseline better,memory baseline better,[numpy, scikit-learn]18649:2, 18649:3, 18649:10, 18649:11, 18649:19scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}time variant better,[numpy, scikit-learn]18649:7scikit-learn:0.20.3Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}time baseline better,memory variant better,[numpy, scikit-learn]18649:8, 18649:21scikit-learn:0.19.2, scikit-learn:0.22Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}time baseline better,[numpy, scikit-learn]18649:9, 18649:17scikit-learn:1.0.1Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}time variant better,memory variant better,[numpy, scikit-learn]18649:13, 18649:20scikit-learn:0.22, scikit-learn:0.22.1Type A
{' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.svm.SVC', ' sklearn.naive_bayes.MultinomialNB'}memory baseline better,[numpy, scikit-learn]18649:15, 18649:18scikit-learn:0.20.3, scikit-learn:0.24.2Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn, spacy]18887:1, 18887:9, 18887:33, 18887:36spacy:3.0.6Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}score inconsistent[pandas, scikit-learn, spacy]18887:2, 18887:3, 18887:10, 18887:11, 18887:18, 18887:27spacy:3.0.6Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}memory variant better,score inconsistent[pandas, scikit-learn, spacy]18887:4, 18887:5, 18887:12, 18887:13, 18887:19, 18887:20, 18887:21, 18887:28, 18887:37spacy:3.0.6Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn, spacy]18887:6, 18887:7, 18887:8, 18887:14, 18887:15, 18887:30, 18887:31, 18887:32spacy:3.0.6Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}memory baseline better,score inconsistent[pandas, scikit-learn, spacy]18887:16, 18887:22, 18887:23, 18887:24, 18887:38, 18887:39, 18887:40spacy:3.0.6Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn, spacy]18887:17, 18887:25, 18887:29spacy:3.0.6Type A
{' spacy.load', ' sklearn.svm.SVC', 'pandas'}time variant better,score inconsistent[pandas, scikit-learn, spacy]18887:26, 18887:34, 18887:35spacy:3.0.6Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]19462:1, 24976:38scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}memory variant better,score inconsistent[pandas, scikit-learn]19462:2, 19462:6, 19462:7, 19462:8scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}score inconsistent[pandas, scikit-learn]19462:9, 19462:14, 19462:15, 19462:16, 19462:17, 19462:30, 19462:31, 19462:32, 24976:14scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}memory baseline better,score inconsistent[pandas, scikit-learn]19462:10, 19462:18, 19462:26scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,score inconsistent[pandas, scikit-learn]19462:22, 19462:23, 19462:24, 19462:25scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}time variant better,memory baseline better,score inconsistent[hyperopt, lightgbm, pandas]19464:2, 19464:7, 19464:8, 19464:9, 19464:10, 19464:22, 19464:23, 19464:24, 19464:25pandas:1.2.4, pandas:0.25.3, pandas:1.0.5, pandas:1.1.5Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}memory baseline better,score inconsistent[hyperopt, lightgbm, pandas]19464:3, 19464:4, 19464:5pandas:1.0.5, pandas:1.1.5, pandas:1.2.4Type A
{' sklearn.impute.SimpleImputer', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[pandas, scikit-learn]19464:9, 19464:10, 19464:11scikit-learn:1.0.1Type A
{' sklearn.impute.SimpleImputer', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]19464:12, 19464:13, 19464:14, 19464:16, 19464:17, 19464:18, 19464:19, 19464:20, 19464:21, 19464:23, 19464:24, 19464:25, 19464:26, 19464:27, 19464:28, 19464:30, 19464:31, 19464:32, 19464:33, 19464:34, 19464:35scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}time baseline better,memory baseline better,score inconsistent[hyperopt, lightgbm, pandas]19464:12, 19464:13, 19464:14, 19464:15, 19464:17, 19464:18, 19464:19, 19464:20pandas:0.25.3, pandas:1.0.5, pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}time variant better,memory variant better,score inconsistent[hyperopt, lightgbm, pandas]19464:27, 19464:28, 19464:29, 19464:30, 19464:32, 19464:33, 19464:34, 19464:35, 19464:62, 19464:63, 19464:64, 19464:67, 19464:68, 19464:70pandas:0.25.3, pandas:1.0.5, pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}time variant better,score inconsistent[hyperopt, lightgbm, pandas]19464:37, 19464:38, 19464:42, 19464:43, 19464:44, 19464:57, 19464:58, 19464:59, 19464:60pandas:0.25.3, pandas:1.0.5, pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}score inconsistent[hyperopt, lightgbm, pandas]19464:39, 19464:40, 19464:45pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}time baseline better,score inconsistent[hyperopt, lightgbm, pandas]19464:47, 19464:48, 19464:49, 19464:50, 19464:52, 19464:53, 19464:54, 19464:55pandas:0.25.3, pandas:1.0.5, pandas:1.1.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas', ' hyperopt.hp.choice'}memory variant better,score inconsistent[hyperopt, lightgbm, pandas]19464:65, 19464:69pandas:1.2.4, pandas:1.1.5Type A
{'pandas', ' category_encoders.leave_one_out.LeaveOneOutEncoder'}time baseline better,[category_encoders, pandas]19466:1pandas:1.2.4Type A
{'pandas', ' category_encoders.leave_one_out.LeaveOneOutEncoder'}time variant better,[category_encoders, pandas]19466:2, 19466:3, 19466:4, 19466:5pandas:1.2.4Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}time variant better,memory variant better,[lightgbm, xgboost]19482:2, 19482:3, 19482:8, 19482:10, 19482:15, 19482:16, 19482:22, 19482:24, 19482:30, 19482:31xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}time variant better,[lightgbm, xgboost]19482:4, 19482:19, 19482:25xgboost:1.2.1, xgboost:1.1.1Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}time baseline better,score inconsistent[lightgbm, xgboost]19482:7, 19482:14, 19482:21, 19482:28, 19482:35xgboost:0.90Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}memory variant better,[lightgbm, xgboost]19482:9, 19482:17, 19482:23, 19482:29xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}time variant better,memory baseline better,[lightgbm, xgboost]19482:36, 19482:37, 19482:38, 19482:44, 19482:46xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}memory baseline better,[lightgbm, xgboost]19482:39, 19482:40, 19482:41, 19482:43, 19482:45, 19482:47, 19482:48xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.3.3Type A
{' lightgbm.LGBMClassifier', ' xgboost.fit', ' xgboost.XGBClassifier', 'lightgbm.fit'}time baseline better,memory baseline better,score inconsistent[lightgbm, xgboost]19482:42, 19482:49xgboost:0.90Type A
{'sklearn.linear_model.LogisticRegression', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time baseline better,[lightgbm, scikit-learn]19509:5scikit-learn:1.0.1Type A
{'sklearn.linear_model.LogisticRegression', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,[lightgbm, scikit-learn]19509:6scikit-learn:1.0.1Type A
{'sklearn.linear_model.LogisticRegression', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory baseline better,[lightgbm, scikit-learn]19509:7scikit-learn:1.0.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,memory variant better,[lightgbm, xgboost]19559:2, 24119:11, 24119:12, 24119:19, 24119:25, 24119:26, 24119:33, 24119:39, 24119:40, 24119:46, 24119:47xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,memory variant better,[lightgbm, xgboost]19559:3, 19559:4, 19559:7, 25882:35, 25882:42xgboost:1.3.3, xgboost:1.2.1, xgboost:0.90Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,[lightgbm, xgboost]19559:5, 19559:6xgboost:1.1.1, xgboost:1.0.2Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}score inconsistent[lightgbm, xgboost]19559:8, 19559:29, 19559:31, 19559:34, 19559:35, 19559:36, 19559:37, 19559:38, 24450:7, 24450:14, 24450:18, 24450:19, 24450:20, 24450:21, 24450:25, 24450:26, 24450:28, 24450:34, 25882:3, 25882:10xgboost:1.5.1, xgboost:1.3.3, xgboost:1.0.2, xgboost:0.90, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,score inconsistent[lightgbm, xgboost]19559:9, 19559:40, 24450:4, 24450:5, 24450:32, 24450:39, 24450:46, 24450:47xgboost:1.4.2, xgboost:1.1.1, xgboost:1.2.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,score inconsistent[lightgbm, xgboost]19559:10, 19559:11, 24450:1, 24450:3, 25882:2, 25882:8, 25882:15, 25882:16, 25882:22, 25882:23, 25882:29, 25882:30, 25882:36, 25882:37, 25882:43, 25882:44xgboost:1.3.3, xgboost:1.2.1, xgboost:1.5.1, xgboost:1.4.2Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,memory variant better,score inconsistent[lightgbm, xgboost]19559:12, 19559:13, 19559:15, 19559:21, 19559:22, 19559:24, 19559:28, 19559:41, 19559:44, 19559:47, 19559:48, 24450:56, 24450:60, 24450:61, 24450:62, 24450:63, 24450:67, 24450:68, 24450:69, 24450:74, 24450:75, 24450:76, 24450:77, 24450:81, 24450:83, 24450:88, 24450:89, 24450:90, 24450:95, 24450:97, 24450:98, 25882:6, 25882:11, 25882:12, 25882:13, 25882:14, 25882:18, 25882:19, 25882:20, 25882:21, 25882:26, 25882:27, 25882:41, 25882:47xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:0.90, xgboost:1.3.3, xgboost:1.4.2, xgboost:1.2.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,memory baseline better,score inconsistent[lightgbm, xgboost]19559:14, 19559:19, 19559:20, 19559:23, 19559:26, 19559:27, 19559:43, 19559:49, 24450:2, 24450:8, 24450:9, 24450:10, 24450:15, 24450:17, 24450:24, 24450:30, 24450:36, 24450:37, 24450:43, 24450:44, 24450:50, 24450:51, 24450:57, 24450:58, 24450:64, 24450:65, 24450:71, 24450:72, 24450:78, 24450:79, 24450:85, 24450:86, 24450:92, 24450:93, 24450:99, 24450:100xgboost:0.90, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory baseline better,score inconsistent[lightgbm, xgboost]19559:16, 19559:30, 19559:32, 19559:33, 19559:39, 19559:45, 24450:16, 24450:22, 24450:23, 24450:29, 25882:9xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.3.3, xgboost:1.5.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,memory variant better,score inconsistent[lightgbm, xgboost]19559:17, 24119:7, 24119:14, 24119:21, 24119:28, 24119:35, 24119:42, 24119:49, 25882:38xgboost:1.3.3, xgboost:0.90Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,score inconsistent[lightgbm, xgboost]19559:18, 19559:25, 19559:42, 19559:46, 24450:6, 24450:11, 24450:12, 24450:13, 24450:27, 24450:31, 24450:33, 24450:38, 24450:40, 24450:41, 24450:45, 24450:48, 24450:52, 24450:53, 24450:54, 24450:55, 24450:59, 24450:66, 24450:80, 24450:87, 24450:94, 25882:4, 25882:5xgboost:1.2.1, xgboost:0.90, xgboost:1.0.2, xgboost:1.1.1, xgboost:1.3.3Type A
{'pandas', ' category_encoders.TargetEncoder'}time baseline better,[category_encoders, pandas]19560:5pandas:0.25.3Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', ' sklearn.metrics.recall_score', ' sklearn.metrics.precision_recall_curve', ' sklearn.metrics.auc', ' sklearn.metrics.roc_curve', ' lightgbm.LGBMClassifier', ' sklearn.metrics.f1_score', 'sklearn.metrics.precision_score', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}score inconsistent[lightgbm, scikit-learn]19581:2, 19581:3, 19581:4, 19584:2, 19584:3, 19584:4scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', ' sklearn.metrics.recall_score', ' sklearn.metrics.precision_recall_curve', ' sklearn.metrics.auc', ' sklearn.metrics.roc_curve', ' lightgbm.LGBMClassifier', ' sklearn.metrics.f1_score', 'sklearn.metrics.precision_score', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,[lightgbm, scikit-learn]19581:5, 19584:5, 19584:6scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', ' sklearn.metrics.recall_score', ' sklearn.metrics.precision_recall_curve', ' sklearn.metrics.auc', ' sklearn.metrics.roc_curve', ' lightgbm.LGBMClassifier', ' sklearn.metrics.f1_score', 'sklearn.metrics.precision_score', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}memory variant better,[lightgbm, scikit-learn]19581:6, 19581:7, 19584:7scikit-learn:1.0.1Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}score inconsistent[numpy, scikit-learn]19772:1, 19772:9, 19772:12, 19772:13, 19772:14, 19772:17, 19772:20, 19772:22, 19772:23scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]19772:2scikit-learn:0.24.2Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]19772:3, 19772:19scikit-learn:0.23.2Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}memory variant better,score inconsistent[numpy, scikit-learn]19772:4, 19772:5, 19772:6, 19772:8, 19772:16, 19772:24scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]19772:7scikit-learn:0.20.3Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}memory baseline better,score inconsistent[numpy, scikit-learn]19772:10, 19772:11, 19772:18scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}time baseline better,score inconsistent[numpy, scikit-learn]19772:15scikit-learn:0.20.3Type A
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', ' sklearn.metrics.confusion_matrix', ' sklearn.naive_bayes.MultinomialNB', 'numpy', ' sklearn.pipeline.Pipeline'}time variant better,score inconsistent[numpy, scikit-learn]19772:21scikit-learn:0.22Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}time baseline better,score inconsistent[nltk, numpy, scikit-learn]20039:1, 20039:12, 20039:13, 20039:20, 20039:21, 20039:25, 20039:36, 20039:37, 20039:44, 20039:45, 20039:49scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.feature_extraction.text.CountVectorizer'}time baseline better,score inconsistent[numpy, scikit-learn]20039:1scikit-learn:1.0.1Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}time baseline better,memory baseline better,score inconsistent[nltk, numpy, scikit-learn]20039:2, 20039:3, 20039:9, 20039:10, 20039:11, 20039:17, 20039:18, 20039:19, 20039:26, 20039:27, 20039:33, 20039:34, 20039:35, 20039:41, 20039:42, 20039:43scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.feature_extraction.text.CountVectorizer'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]20039:2, 20039:3, 20039:9, 20039:10, 20039:11, 20039:17, 20039:18, 20039:19scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}time baseline better,memory variant better,score inconsistent[nltk, numpy, scikit-learn]20039:4, 20039:5, 20039:6, 20039:7, 20039:8, 20039:14, 20039:15, 20039:16, 20039:22, 20039:23, 20039:24, 20039:28, 20039:29, 20039:30, 20039:31, 20039:32, 20039:38, 20039:39, 20039:40, 20039:46, 20039:47, 20039:48scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.feature_extraction.text.CountVectorizer'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]20039:4, 20039:5, 20039:6, 20039:7, 20039:8, 20039:14, 20039:15, 20039:16, 20039:22, 20039:23, 20039:24scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' sklearn.model_selection.train_test_split', 'numpy', 'sklearn.feature_extraction.text.CountVectorizer'}time variant better,score inconsistent[numpy, scikit-learn]20039:12, 20039:13, 20039:20, 20039:21scikit-learn:0.22.1, scikit-learn:0.22Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}memory baseline better,score inconsistent[nltk, numpy, scikit-learn]20039:50scikit-learn:0.24.2Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}time variant better,memory baseline better,score inconsistent[nltk, numpy, scikit-learn]20039:51, 20039:57, 20039:58, 20039:59, 20039:65, 20039:66, 20039:67, 20039:74, 20039:75, 20039:82, 20039:83, 20039:89, 20039:90, 20039:91scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}time variant better,memory variant better,score inconsistent[nltk, numpy, scikit-learn]20039:52, 20039:53, 20039:54, 20039:55, 20039:56, 20039:60, 20039:61, 20039:62, 20039:63, 20039:64, 20039:70, 20039:71, 20039:72, 20039:76, 20039:77, 20039:78, 20039:79, 20039:80, 20039:84, 20039:85, 20039:86, 20039:87, 20039:88, 20039:92, 20039:93, 20039:94, 20039:95, 20039:96scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' nltk.corpus.stopwords.words', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', 'numpy', ' nltk.tokenize.TweetTokenizer'}time variant better,score inconsistent[nltk, numpy, scikit-learn]20039:68, 20039:69, 20039:73, 20039:81scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1Type A
{' xgboost.XGBClassifier', 'bayes_opt.BayesianOptimization', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,score inconsistent[bayesian-optimization, lightgbm, xgboost]20644:2, 20644:9, 20644:16, 20644:23, 20644:30, 20644:37, 20644:43, 20644:50, 20644:57, 20644:64, 20644:71, 20644:78, 20644:85, 20644:92, 20644:93, 20644:100, 20644:107, 20644:114, 20644:121, 20644:127, 20644:134, 20644:141, 20644:142xgboost:1.4.2, xgboost:1.5.1Type A
{' xgboost.XGBClassifier', 'bayes_opt.BayesianOptimization', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,score inconsistent[bayesian-optimization, lightgbm, xgboost]20644:4, 20644:6, 20644:7, 20644:11, 20644:12, 20644:14, 20644:18, 20644:19, 20644:21, 20644:24, 20644:26, 20644:28, 20644:31, 20644:33, 20644:35, 20644:41, 20644:45, 20644:48, 20644:52, 20644:54, 20644:59, 20644:61, 20644:62, 20644:66, 20644:68, 20644:73, 20644:76, 20644:80, 20644:83, 20644:88, 20644:90, 20644:95, 20644:97, 20644:102, 20644:105, 20644:109, 20644:110, 20644:112, 20644:117, 20644:119, 20644:123, 20644:125, 20644:130, 20644:132, 20644:136, 20644:137, 20644:138, 20644:139, 20644:143, 20644:144, 20644:145, 20644:146, 20644:147xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.1.1, xgboost:1.3.3Type A
{' xgboost.XGBClassifier', 'bayes_opt.BayesianOptimization', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,score inconsistent[bayesian-optimization, lightgbm, xgboost]20644:39, 20644:40, 20644:42, 20644:46, 20644:49, 20644:53, 20644:56, 20644:60, 20644:63, 20644:67, 20644:70, 20644:74, 20644:75, 20644:77, 20644:82, 20644:84, 20644:87, 20644:89, 20644:91, 20644:94, 20644:96, 20644:98, 20644:101, 20644:103, 20644:104, 20644:108, 20644:111, 20644:115, 20644:116, 20644:118, 20644:122, 20644:124, 20644:126, 20644:129, 20644:131, 20644:133xgboost:1.2.1, xgboost:1.1.1, xgboost:0.90, xgboost:1.3.3, xgboost:1.0.2Type A
{' xgboost.XGBClassifier', 'bayes_opt.BayesianOptimization', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,score inconsistent[bayesian-optimization, lightgbm, xgboost]20644:44, 20644:51, 20644:58, 20644:65, 20644:72, 20644:79, 20644:86, 20644:99, 20644:106, 20644:113, 20644:120xgboost:1.4.2, xgboost:1.5.1Type A
{' xgboost.XGBClassifier', 'bayes_opt.BayesianOptimization', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[bayesian-optimization, lightgbm, xgboost]20644:47, 20644:55, 20644:69, 20644:81, 20644:140xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1, xgboost:0.90Type A
{' xgboost.XGBClassifier', 'bayes_opt.BayesianOptimization', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[bayesian-optimization, lightgbm, xgboost]20644:128, 20644:135xgboost:1.4.2Type A
{'pandas', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[pandas, xgboost]20694:1, 20694:2, 20694:3, 20694:4, 20694:5, 20694:6, 20694:7, 20694:8, 20694:9, 20694:10, 20694:11, 20694:12, 20694:13, 20694:14, 20694:15, 20694:16, 20694:17, 20694:18, 20694:19, 20694:20, 20694:21, 20694:22, 20694:23, 20694:24, 20694:25, 20694:26, 20694:27, 20694:28, 20694:29, 20694:30, 20694:31, 20694:33, 20694:34, 20694:35, 20694:37, 20694:38, 20694:39, 20694:40, 20694:41, 24969:8, 24969:9, 24969:15, 24969:22, 24969:29, 24969:30, 24969:36, 24969:37xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type A
{'pandas', ' xgboost.XGBClassifier'}memory baseline better,[pandas, xgboost]20694:32, 20694:36, 24969:1, 24969:2, 24969:16, 24969:23xgboost:1.2.1, xgboost:1.5.1, xgboost:1.4.2Type A
{'pandas', ' xgboost.XGBClassifier'}time variant better,[pandas, xgboost]20694:42xgboost:0.90Type A
{'sklearn.metrics.roc_auc_score', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.LeakyReLU', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.MaxPooling2D', ' sklearn.model_selection.train_test_split', ' keras.layers.Flatten', ' keras.layers.Dropout', ' keras.backend.set_value', 'numpy', ' keras.models.load_model', ' keras.models.Sequential', ' keras.regularizers.l2', ' keras.layers.Dense'}time variant better,score inconsistent[keras, numpy, scikit-learn, tensorflow]20926:3, 20926:4tensorflow:2.7.0Type A
{'sklearn.metrics.roc_auc_score', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.LeakyReLU', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.MaxPooling2D', ' sklearn.model_selection.train_test_split', ' keras.layers.Flatten', ' keras.layers.Dropout', ' keras.backend.set_value', 'numpy', ' keras.models.load_model', ' keras.models.Sequential', ' keras.regularizers.l2', ' keras.layers.Dense'}time baseline better,[keras, numpy, scikit-learn, tensorflow]20926:5, 20926:8tensorflow:2.7.0, tensorflow:2.4.1Type A
{'sklearn.metrics.roc_auc_score', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.LeakyReLU', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.MaxPooling2D', ' sklearn.model_selection.train_test_split', ' keras.layers.Flatten', ' keras.layers.Dropout', ' keras.backend.set_value', 'numpy', ' keras.models.load_model', ' keras.models.Sequential', ' keras.regularizers.l2', ' keras.layers.Dense'}time baseline better,score inconsistent[keras, numpy, scikit-learn, tensorflow]20926:6, 20926:7tensorflow:2.7.0, tensorflow:2.4.1Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]21043:1, 21043:9scikit-learn:1.0.1Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}memory baseline better,score inconsistent[numpy, scikit-learn]21043:2, 21043:3, 21043:11, 21043:14, 21043:17, 21043:18, 21043:19, 21043:22scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:1.0.1Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}time variant better,score inconsistent[numpy, scikit-learn]21043:4, 21043:13, 21043:15scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}score inconsistent[numpy, scikit-learn]21043:5, 21043:7, 21043:20, 21043:21, 21043:23scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.22.1Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]21043:6, 21043:10scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}memory variant better,score inconsistent[numpy, scikit-learn]21043:8, 21043:16, 21043:24scikit-learn:0.19.2Type A
{'numpy', ' sklearn.tree.DecisionTreeClassifier', 'sklearn.tree.plot_sklearn.tree'}time baseline better,score inconsistent[numpy, scikit-learn]21043:12scikit-learn:0.22.1Type A
{'shap', ' lightgbm.Dataset', ' lightgbm.train'}memory baseline better,[lightgbm, shap]24014:2, 24014:3, 24014:15, 24014:16, 24014:25, 24014:26, 24014:27, 24014:37, 24014:40, 24014:49, 24014:52shap:0.40.0, shap:0.38.1, shap:0.36.0, shap:0.39.0Type A
{'shap', ' lightgbm.Dataset', ' lightgbm.train'}time baseline better,memory baseline better,[lightgbm, shap]24014:4, 24014:28, 24014:38, 24014:50, 24014:61, 24014:63shap:0.40.0, shap:0.36.0, shap:0.39.0, shap:0.38.1Type A
{'shap', ' lightgbm.Dataset', ' lightgbm.train'}time variant better,memory variant better,[lightgbm, shap]24014:5, 24014:11, 24014:12, 24014:23, 24014:24, 24014:30, 24014:31, 24014:32, 24014:35, 24014:43, 24014:45, 24014:47, 24014:57, 24014:60, 24014:67, 24014:71, 24014:83shap:0.40.0, shap:0.25.2, shap:0.24.0, shap:0.32.1, shap:0.31.0, shap:0.30.0, shap:0.29.3Type A
{'shap', ' lightgbm.Dataset', ' lightgbm.train'}memory variant better,[lightgbm, shap]24014:6, 24014:7, 24014:8, 24014:9, 24014:17, 24014:20, 24014:29, 24014:36, 24014:41, 24014:42, 24014:44, 24014:59, 24014:68, 24014:72shap:0.40.0, shap:0.30.0, shap:0.29.3, shap:0.34.0, shap:0.24.0, shap:0.32.1, shap:0.25.2Type A
{'shap', ' lightgbm.Dataset', ' lightgbm.train'}time variant better,memory baseline better,[lightgbm, shap]24014:13, 24014:14, 24014:39, 24014:51, 24014:62, 24014:64shap:0.40.0, shap:0.39.0, shap:0.38.1, shap:0.36.0Type A
{'shap', ' lightgbm.Dataset', ' lightgbm.train'}time baseline better,memory variant better,[lightgbm, shap]24014:18, 24014:19, 24014:21, 24014:33, 24014:48, 24014:53, 24014:54, 24014:55, 24014:56, 24014:65, 24014:66, 24014:69, 24014:84shap:0.32.1, shap:0.31.0, shap:0.29.3, shap:0.24.0, shap:0.34.0, shap:0.30.0Type A
{' lightgbm.train', 'lightgbm.Dataset', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory baseline better,[lightgbm, xgboost]24026:2xgboost:1.4.2Type A
{' lightgbm.train', 'lightgbm.Dataset', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}score inconsistent[lightgbm, xgboost]24026:5xgboost:1.1.1Type A
{' lightgbm.train', 'lightgbm.Dataset', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,[lightgbm, xgboost]24026:6, 24026:7xgboost:1.0.2, xgboost:0.90Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,score inconsistent[catboost, lightgbm, xgboost]24079:2, 24079:8, 24079:9, 24079:15, 24079:16, 24079:22, 24079:23, 24079:29, 24079:30, 24079:36, 24079:37, 24079:43, 24079:44, 24079:50, 24079:51, 24079:57, 24079:58, 24079:64, 24079:65, 24079:71, 24079:72, 24079:78, 24079:79, 24079:85, 24079:86, 24079:92, 24079:93, 24079:99, 24079:100, 24079:106, 24079:107, 24079:113, 24079:114, 24079:120, 24079:121, 24079:127, 24079:128, 24079:134, 24079:135, 24079:141, 24079:142, 24079:148, 24079:149, 24079:155, 24079:156, 24079:162, 24079:163, 24079:169, 24079:170, 24079:176, 24079:177, 24079:183, 24079:184, 24079:190, 24079:191, 24079:197, 24079:198, 24079:204, 24079:205, 24079:211, 24079:212, 24079:218, 24079:219, 24079:225, 24079:226, 24079:232, 24079:233, 24079:239, 24079:240, 24079:246, 24079:247, 24079:253, 24079:254, 24079:260, 24079:261, 24079:268, 24079:275, 24079:281, 24079:288, 24079:289, 24079:295, 24079:296, 24079:316, 24079:337, 24079:338, 24079:344, 24079:351xgboost:1.4.2, xgboost:1.5.1Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time variant better,score inconsistent[catboost, lightgbm, xgboost]24079:3, 24079:4, 24079:5, 24079:6, 24079:10, 24079:11xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,score inconsistent[catboost, lightgbm, xgboost]24079:7, 24079:14, 24079:21, 24079:28, 24079:35, 24079:42, 24079:49, 24079:56, 24079:63, 24079:70, 24079:77, 24079:84, 24079:91, 24079:98, 24079:105, 24079:112, 24079:119, 24079:126, 24079:133, 24079:140, 24079:147, 24079:154, 24079:161, 24079:168, 24079:175, 24079:182, 24079:189, 24079:196, 24079:203, 24079:210, 24079:217, 24079:224, 24079:231, 24079:238, 24079:245, 24079:252, 24079:259, 24079:266, 24079:273, 24079:280, 24079:287, 24079:294, 24079:301, 24079:307, 24079:308, 24079:315, 24079:320, 24079:322, 24079:328, 24079:329, 24079:336, 24079:343, 24079:350, 24079:357, 24079:364, 24079:370, 24079:385, 24079:395, 24079:413, 24079:420, 24079:427xgboost:0.90, xgboost:1.0.2, xgboost:1.1.1, xgboost:1.3.3Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,score inconsistent[catboost, lightgbm, xgboost]24079:12, 24079:13, 24079:17, 24079:18, 24079:19, 24079:20, 24079:24, 24079:25, 24079:26, 24079:27, 24079:31, 24079:32, 24079:33, 24079:34, 24079:38, 24079:39, 24079:40, 24079:41, 24079:45, 24079:46, 24079:47, 24079:48, 24079:52, 24079:53, 24079:54, 24079:55, 24079:59, 24079:60, 24079:61, 24079:62, 24079:66, 24079:67, 24079:68, 24079:69, 24079:73, 24079:74, 24079:75, 24079:76, 24079:80, 24079:81, 24079:82, 24079:83, 24079:87, 24079:88, 24079:89, 24079:90, 24079:94, 24079:95, 24079:96, 24079:97, 24079:101, 24079:102, 24079:103, 24079:104, 24079:108, 24079:109, 24079:110, 24079:111, 24079:115, 24079:116, 24079:117, 24079:118, 24079:122, 24079:123, 24079:124, 24079:125, 24079:129, 24079:130, 24079:131, 24079:132, 24079:136, 24079:137, 24079:138, 24079:139, 24079:143, 24079:144, 24079:145, 24079:146, 24079:150, 24079:151, 24079:152, 24079:153, 24079:157, 24079:158, 24079:159, 24079:160, 24079:164, 24079:165, 24079:166, 24079:167, 24079:171, 24079:172, 24079:173, 24079:174, 24079:178, 24079:179, 24079:180, 24079:181, 24079:185, 24079:186, 24079:187, 24079:188, 24079:192, 24079:193, 24079:194, 24079:195, 24079:199, 24079:200, 24079:201, 24079:202, 24079:206, 24079:207, 24079:208, 24079:209, 24079:213, 24079:214, 24079:215, 24079:216, 24079:220, 24079:221, 24079:222, 24079:223, 24079:227, 24079:228, 24079:229, 24079:230, 24079:234, 24079:235, 24079:236, 24079:237, 24079:241, 24079:242, 24079:243, 24079:244, 24079:248, 24079:249, 24079:250, 24079:251, 24079:255, 24079:256, 24079:257, 24079:258, 24079:263, 24079:264, 24079:265, 24079:269, 24079:270, 24079:271, 24079:272, 24079:276, 24079:277, 24079:278, 24079:279, 24079:284, 24079:285, 24079:286, 24079:290, 24079:291, 24079:292, 24079:293, 24079:314, 24079:326, 24079:327, 24079:333, 24079:334, 24079:335, 24079:339, 24079:340, 24079:341, 24079:342, 24079:346, 24079:347, 24079:348, 24079:349, 24079:354, 24079:355xgboost:1.1.1, xgboost:1.0.2, xgboost:1.3.3, xgboost:1.2.1Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}memory variant better,score inconsistent[catboost, lightgbm, xgboost]24079:262, 24079:283, 24079:297, 24079:298, 24079:299, 24079:300, 24079:304, 24079:305, 24079:306, 24079:311, 24079:312, 24079:313, 24079:318, 24079:319, 24079:321, 24079:325, 24079:332, 24079:353, 24079:356, 24079:360, 24079:361, 24079:362, 24079:363, 24079:367, 24079:368, 24079:369, 24079:381, 24079:382, 24079:383, 24079:384, 24079:388, 24079:389, 24079:396, 24079:397, 24079:398, 24079:403, 24079:405, 24079:409, 24079:410, 24079:411, 24079:412, 24079:416, 24079:417, 24079:418, 24079:419, 24079:425, 24079:426, 24079:430, 24079:431, 24079:433, 24079:446xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}memory baseline better,score inconsistent[catboost, lightgbm, xgboost]24079:267, 24079:274, 24079:282, 24079:302, 24079:303, 24079:309, 24079:310, 24079:317, 24079:323, 24079:324, 24079:345, 24079:352, 24079:358, 24079:359, 24079:365, 24079:366, 24079:379, 24079:380, 24079:386, 24079:387, 24079:400, 24079:407, 24079:408, 24079:414, 24079:415, 24079:428, 24079:429xgboost:1.5.1, xgboost:1.4.2Type A
{' xgboost.sklearn.XGBRegressor', 'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, lightgbm, xgboost]24079:330, 24079:331xgboost:1.5.1, xgboost:1.4.2Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,score inconsistent[catboost, lightgbm]24088:2, 24088:3, 24088:4, 24088:5, 24088:8, 24088:9, 24088:10, 24088:11, 24088:12, 24088:15, 24088:16, 24088:18, 24088:19, 24088:36, 24088:39lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:3.3.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,score inconsistent[catboost, lightgbm]24088:6, 24088:7, 24088:13, 24088:14, 24088:21lightgbm:2.2.3, lightgbm:2.1.2Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}memory variant better,score inconsistent[catboost, lightgbm]24088:17, 24088:22, 24088:23, 24088:24, 24088:25, 24088:29, 24088:33, 24088:37, 24088:38, 24088:71, 24088:72, 24088:73, 24088:74lightgbm:3.1.1, lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.0.0, lightgbm:2.3.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}memory baseline better,score inconsistent[catboost, lightgbm]24088:20, 24088:48, 24088:49lightgbm:2.2.3, lightgbm:2.1.2Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}memory variant better,[catboost, lightgbm]24088:40, 24088:45, 24088:75lightgbm:2.3.1, lightgbm:3.1.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}memory baseline better,[catboost, lightgbm]24088:41, 24088:76, 24088:77lightgbm:2.2.3, lightgbm:2.1.2Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,[catboost, lightgbm]24088:42lightgbm:2.1.2Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,[catboost, lightgbm]24088:43, 24088:44, 24088:46lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.0.0Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,score inconsistent[catboost, lightgbm]24088:47, 24088:50, 24088:51, 24088:52, 24088:53, 24088:54, 24088:57, 24088:58, 24088:59, 24088:60, 24088:61, 24088:64, 24088:65, 24088:66, 24088:67, 24088:68lightgbm:2.3.1, lightgbm:3.3.1, lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:3.0.0Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, lightgbm]24088:55, 24088:56, 24088:62, 24088:63, 24088:69, 24088:70lightgbm:2.2.3, lightgbm:2.1.2Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory baseline better,[lightgbm, xgboost]24119:2, 24119:8, 24119:9, 24119:15, 24119:16, 24119:22, 24119:23, 24119:29, 24119:30, 24119:36, 24119:37, 24119:43, 24119:44xgboost:1.4.2, xgboost:1.5.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,[lightgbm, xgboost]24119:4, 24119:5xgboost:1.2.1, xgboost:1.1.1Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory variant better,[lightgbm, xgboost]24119:13, 24119:17, 24119:18, 24119:20, 24119:24, 24119:27, 24119:31, 24119:32, 24119:34, 24119:38, 24119:41, 24119:45, 24119:48, 25882:49xgboost:1.0.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:0.90Type A
{'numpy', 'sklearn.linear_model.Ridge'}time variant better,[numpy, scikit-learn]24131:4, 24131:9, 24131:16, 24131:20, 24131:24scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'numpy', 'sklearn.linear_model.Ridge'}time baseline better,[numpy, scikit-learn]24131:5, 24131:11, 24131:18scikit-learn:0.22, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'numpy', 'sklearn.linear_model.Ridge'}memory baseline better,[numpy, scikit-learn]24131:7, 24131:15scikit-learn:0.20.3Type A
{'numpy', 'sklearn.linear_model.Ridge'}time variant better,memory baseline better,[numpy, scikit-learn]24131:23scikit-learn:0.20.3Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time variant better,memory baseline better,[lightgbm, scikit-learn]24141:1, 24141:2scikit-learn:0.19.2, scikit-learn:0.20.3Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time baseline better,memory baseline better,[lightgbm, scikit-learn]24141:3, 24141:9, 24141:10scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time variant better,memory variant better,[lightgbm, scikit-learn]24141:4scikit-learn:0.22.1Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}memory variant better,[lightgbm, scikit-learn]24141:7, 24141:11, 24141:14, 24386:33, 24386:35scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}memory baseline better,[lightgbm, scikit-learn]24141:8, 24141:15, 24141:16, 24141:17, 24141:22, 24141:23, 24386:37, 24386:38, 24386:39, 24386:40, 24386:41, 24386:42, 24386:44, 24386:45, 24386:46, 24386:47, 24386:48, 24386:49scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time baseline better,[lightgbm, scikit-learn]24141:12, 24141:13, 24141:19, 24141:20scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_absolute_error', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time baseline better,memory variant better,[lightgbm, scikit-learn]24141:18, 24141:21, 24386:34scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time variant better,memory variant better,[lightgbm, scikit-learn]24320:2, 24320:3, 24320:4, 24320:5, 24320:6, 24320:7, 24320:23, 24320:24, 24320:25, 24320:26, 24320:27, 24320:28, 24331:1, 24331:2, 24331:3, 24331:4, 24331:5, 24331:6, 24331:7, 24331:8, 24331:9, 24331:10, 24331:11, 24331:12, 24331:13, 24331:14, 24331:15, 24331:16, 24331:17, 24331:18, 24331:19, 24331:20, 24331:21, 24331:22, 24331:23, 24331:24, 24331:25, 24331:26, 24331:27, 24331:28, 24331:29, 24331:30, 24331:31, 24331:32, 24331:33, 24331:34, 24331:35scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}memory baseline better,[lightgbm, scikit-learn]24320:8, 24320:29, 24320:37, 24320:38, 24320:39, 24320:40, 24320:43, 24320:44, 24320:45, 24320:46, 24320:47, 24320:48, 24320:49, 24339:39scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}memory variant better,[lightgbm, scikit-learn]24320:9, 24320:10, 24320:11, 24320:12, 24320:13, 24320:14, 24320:18, 24320:21, 24320:30, 24320:31, 24320:32, 24320:33, 24320:35scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time baseline better,memory baseline better,[lightgbm, scikit-learn]24320:15, 24320:36, 24320:41, 24320:42, 24339:40, 24339:41, 24339:42, 24339:46, 24339:47, 24339:48, 24339:49scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time baseline better,memory variant better,[lightgbm, scikit-learn]24320:16, 24320:17, 24320:19, 24320:20, 24320:34scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time variant better,memory baseline better,[lightgbm, scikit-learn]24320:22, 24331:36, 24331:37, 24331:38, 24331:39, 24331:40, 24331:41, 24331:42, 24331:43, 24331:44, 24331:45, 24331:46, 24331:47, 24331:48, 24331:49scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_squared_error', 'sklearn.model_selection.KFold'}memory variant better,[lightgbm, scikit-learn]24324:4, 24324:7, 24324:11, 24324:14, 24324:18, 24324:21, 24324:25, 24324:28scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_squared_error', 'sklearn.model_selection.KFold'}time baseline better,memory variant better,[lightgbm, scikit-learn]24324:32, 24324:35scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_squared_error', 'sklearn.model_selection.KFold'}time baseline better,[lightgbm, scikit-learn]24324:33, 24324:34scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_squared_error', 'sklearn.model_selection.KFold'}time baseline better,memory baseline better,[lightgbm, scikit-learn]24324:39, 24324:40, 24324:41, 24324:42scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_squared_error', 'sklearn.model_selection.KFold'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24324:46, 24324:47, 24324:48, 24324:49scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.cross_val_score', 'pandas', ' sklearn.linear_model.SGDRegressor'}memory baseline better,score inconsistent[pandas, scikit-learn]24329:1, 24329:10, 24329:12, 24329:13, 24329:17, 24329:18, 24329:33, 24329:34scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.model_selection.cross_val_score', 'pandas', ' sklearn.linear_model.SGDRegressor'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]24329:2, 24329:3, 24329:9, 24329:11, 24329:25, 24329:26scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.cross_val_score', 'pandas', ' sklearn.linear_model.SGDRegressor'}score inconsistent[pandas, scikit-learn]24329:4, 24329:5, 24329:28, 24329:41, 24329:42, 24329:43scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.model_selection.cross_val_score', 'pandas', ' sklearn.linear_model.SGDRegressor'}time baseline better,score inconsistent[pandas, scikit-learn]24329:19, 24329:29, 24329:36, 24329:37, 24329:44, 24329:45scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1Type A
{' sklearn.model_selection.cross_val_score', 'pandas', ' sklearn.linear_model.SGDRegressor'}time variant better,score inconsistent[pandas, scikit-learn]24329:20, 24329:21scikit-learn:0.22.1, scikit-learn:0.22Type A
{' sklearn.model_selection.cross_val_score', 'pandas', ' sklearn.linear_model.SGDRegressor'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]24329:27, 24329:35scikit-learn:0.23.2Type A
{'pandas', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,[lightgbm, pandas]24331:1, 24331:2, 24331:3, 24331:4, 24331:5, 24331:7, 24331:8, 24331:10, 24331:11, 24331:13, 24331:14, 24331:17, 24331:20, 24331:21, 24331:22, 24331:23, 24331:25, 24331:26, 24331:29pandas:1.2.4, pandas:1.1.5, pandas:1.0.5, pandas:0.25.3, pandas:0.24.2Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}memory variant better,[pandas, scikit-learn]24331:2, 24331:3, 24331:5, 24331:6, 24331:8, 24331:11, 24331:14, 24331:17, 24331:19, 24331:21, 24331:22, 24331:24, 24331:25, 24331:27, 24331:28, 24331:30, 24331:31, 24331:33, 24331:34scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time baseline better,memory variant better,[pandas, scikit-learn]24331:4, 24331:7, 24331:12, 24331:13, 24331:15, 24331:16, 24331:18scikit-learn:1.0.1Type A
{'pandas', ' lightgbm.LGBMRegressor'}memory variant better,[lightgbm, pandas]24331:9, 24331:15, 24331:16, 24331:19, 24331:27, 24331:28pandas:1.0.5, pandas:1.2.4, pandas:0.25.3Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time baseline better,[pandas, scikit-learn]24331:10scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time variant better,memory variant better,[pandas, scikit-learn]24331:20, 24331:23, 24331:26, 24331:29, 24331:32, 24331:35scikit-learn:1.0.1Type A
{'pandas', ' lightgbm.LGBMRegressor'}memory baseline better,[lightgbm, pandas]24331:31, 24331:32, 24331:38pandas:1.2.4, pandas:1.1.5Type A
{'pandas', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,[lightgbm, pandas]24331:33, 24331:34, 24331:41pandas:1.0.5, pandas:0.25.3, pandas:0.24.2Type A
{'pandas', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,[lightgbm, pandas]24331:35, 24331:37, 24331:39, 24331:40pandas:1.2.4, pandas:1.0.5, pandas:0.25.3Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time baseline better,memory baseline better,[pandas, scikit-learn]24337:1, 24337:2scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}memory baseline better,[pandas, scikit-learn]24337:3, 24337:4, 24337:5, 24337:6, 24337:10, 24337:11, 24337:18scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time variant better,memory baseline better,[pandas, scikit-learn]24337:7, 24337:8scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time baseline better,[pandas, scikit-learn]24337:14, 24337:22scikit-learn:0.21.3Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time variant better,memory variant better,[pandas, scikit-learn]24337:15, 24337:20, 24337:23, 24337:39, 24337:40, 24337:46scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}memory variant better,[pandas, scikit-learn]24337:16, 24337:21, 24337:24, 24337:28, 24337:29, 24337:30, 24337:31, 24337:32, 24337:36, 24337:37, 24337:38scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time variant better,[pandas, scikit-learn]24337:42scikit-learn:0.24.2Type A
{'pandas', ' sklearn.ensemble.RandomForestRegressor'}time baseline better,memory variant better,[pandas, scikit-learn]24337:44, 24337:45, 24337:47, 24337:48scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' lightgbm.LGBMRegressor', ' sklearn.preprocessing.LabelEncoder', 'sklearn.model_selection.KFold', ' sklearn.metrics.mean_squared_error'}time variant better,[lightgbm, scikit-learn]24339:4, 24339:5, 24339:6, 24339:7, 24339:12, 24339:13, 24339:14, 24339:18, 24339:19, 24339:20, 24339:21, 24339:25, 24339:26, 24339:27, 24339:28scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.22.1Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,[lightgbm, optuna]24347:2optuna:2.9.1Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory baseline better,score inconsistent[lightgbm, optuna]24347:3, 24347:4, 24347:16, 24347:43, 24347:56optuna:2.8.0, optuna:2.7.0, optuna:2.3.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,memory variant better,score inconsistent[lightgbm, optuna]24347:5, 24347:12, 24347:15, 24347:24, 24347:31, 24347:35, 24347:39, 24347:41, 24347:48optuna:2.6.0, optuna:2.7.0, optuna:2.4.0, optuna:2.3.0, optuna:2.8.0, optuna:2.10.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory variant better,score inconsistent[lightgbm, optuna]24347:6, 24347:17optuna:2.5.0, optuna:2.10.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,score inconsistent[lightgbm, optuna]24347:7, 24347:28, 24347:44optuna:2.4.0, optuna:2.7.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory baseline better,[lightgbm, optuna]24347:8, 24347:11optuna:2.3.0, optuna:2.8.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,[lightgbm, optuna]24347:9optuna:2.10.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory variant better,[lightgbm, optuna]24347:10, 24347:13, 24347:34optuna:2.9.1, optuna:2.6.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory baseline better,score inconsistent[lightgbm, optuna]24347:14, 24347:25, 24347:32, 24347:36, 24347:37optuna:2.5.0, optuna:2.10.0, optuna:2.3.0, optuna:2.7.0, optuna:2.6.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}score inconsistent[lightgbm, optuna]24347:18, 24347:23, 24347:26, 24347:30optuna:2.9.1, optuna:2.4.0, optuna:2.5.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,score inconsistent[lightgbm, optuna]24347:19, 24347:45optuna:2.8.0, optuna:2.6.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory variant better,score inconsistent[lightgbm, optuna]24347:20, 24347:29, 24347:33, 24347:42, 24347:47, 24347:49, 24347:51, 24347:54optuna:2.7.0, optuna:2.6.0, optuna:2.10.0, optuna:2.9.1, optuna:2.4.0, optuna:2.8.0, optuna:2.5.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory variant better,[lightgbm, optuna]24347:21, 24347:53optuna:2.6.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory baseline better,[lightgbm, optuna]24347:22, 24347:38, 24347:40, 24347:46optuna:2.5.0, optuna:2.3.0Type A
{'lightgbm.LGBMRegressor', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.integration.lightgbm.plot_importance', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,memory variant better,[lightgbm, optuna]24347:27, 24347:52optuna:2.8.0, optuna:2.7.0Type A
{' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}memory baseline better,[lightgbm, scikit-learn]24369:2, 24369:14, 24369:23, 24369:24, 24369:30, 24369:38scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time baseline better,memory baseline better,[lightgbm, scikit-learn]24369:3, 24369:6, 24369:7, 24369:10, 24369:16, 24369:31scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time baseline better,[lightgbm, scikit-learn]24369:4, 24369:19, 24369:21, 24369:25, 24369:33, 24369:40, 24369:41, 24369:47scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.24.2Type A
{' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time variant better,memory baseline better,[lightgbm, scikit-learn]24369:9, 24369:17scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error'}time variant better,[lightgbm, scikit-learn]24369:18, 24369:20, 24369:28, 24369:49scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}memory variant better,score inconsistent[lightgbm, scikit-learn]24401:2, 24401:3, 24401:12, 24401:13, 24401:17, 24401:20, 24401:21, 24401:23, 24401:24, 24401:30, 24401:31scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24401:4, 24401:5, 24401:6, 24401:7, 24401:9, 24401:10, 24401:11, 24401:16, 24401:18, 24401:19, 24401:33, 24401:34scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}score inconsistent[lightgbm, scikit-learn]24401:8scikit-learn:0.19.2Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]24401:14, 24401:25, 24401:26, 24401:27, 24401:28, 24401:32, 24401:35scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}time variant better,score inconsistent[lightgbm, scikit-learn]24401:15, 24401:22scikit-learn:0.19.2Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}time baseline better,score inconsistent[lightgbm, scikit-learn]24401:29scikit-learn:0.19.2Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24401:36, 24401:39, 24401:40, 24401:41, 24401:42, 24401:43scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24401:37, 24401:38, 24401:44, 24401:45scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{'sklearn.metrics.mean_squared_error', ' sklearn.model_selection.cross_val_score', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24401:46, 24401:47, 24401:48, 24401:49scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'pandas', ' xgboost.XGBRegressor'}time baseline better,memory variant better,[pandas, xgboost]24411:1, 24411:3, 24411:16xgboost:1.5.1, xgboost:1.3.3, xgboost:1.4.2Type A
{'pandas', ' xgboost.XGBRegressor'}memory variant better,[pandas, xgboost]24411:2, 24411:8, 24411:9, 24411:10, 24411:17, 24411:23, 24411:24, 24411:29, 24411:30, 24411:31xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3Type A
{'pandas', ' xgboost.XGBRegressor'}memory baseline better,[pandas, xgboost]24411:4, 24411:5, 24411:6, 24411:11, 24411:12, 24411:13, 24411:19, 24411:25, 24411:27, 24411:32xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{'pandas', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,score inconsistent[pandas, xgboost]24411:7, 24411:14, 24411:21, 24411:28, 24411:35, 24411:42xgboost:0.90Type A
{'pandas', ' xgboost.XGBRegressor'}time variant better,memory variant better,[pandas, xgboost]24411:15, 24411:22, 24411:36, 24411:37, 24411:38xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type A
{'pandas', ' xgboost.XGBRegressor'}time variant better,memory baseline better,[pandas, xgboost]24411:18, 24411:20, 24411:26, 24411:33, 24411:39, 24411:40xgboost:1.2.1, xgboost:1.0.2, xgboost:1.1.1Type A
{'pandas', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,[pandas, xgboost]24411:34, 24411:41xgboost:1.0.2Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time baseline better,memory variant better,[lightgbm, optuna]24446:2, 24446:5, 24446:8optuna:2.9.1, optuna:2.6.0, optuna:2.3.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}memory variant better,[lightgbm, optuna]24446:3, 24446:7optuna:2.8.0, optuna:2.4.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time variant better,memory variant better,[lightgbm, optuna]24446:4optuna:2.7.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}memory variant better,score inconsistent[lightgbm, optuna]24446:6, 24446:9optuna:2.5.0, optuna:2.10.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}memory baseline better,[lightgbm, optuna]24446:10, 24446:13, 24446:21, 24446:29optuna:2.9.1, optuna:2.6.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}score inconsistent[lightgbm, optuna]24446:11, 24446:26, 24446:27optuna:2.8.0, optuna:2.9.1Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}memory baseline better,score inconsistent[lightgbm, optuna]24446:12, 24446:23, 24446:30, 24446:31optuna:2.7.0, optuna:2.4.0, optuna:2.5.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time variant better,memory baseline better,[lightgbm, optuna]24446:14, 24446:24optuna:2.5.0, optuna:2.3.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time variant better,memory baseline better,score inconsistent[lightgbm, optuna]24446:15, 24446:16, 24446:28optuna:2.4.0, optuna:2.3.0, optuna:2.7.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time baseline better,memory baseline better,[lightgbm, optuna]24446:17, 24446:20, 24446:32optuna:2.10.0, optuna:2.7.0, optuna:2.3.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time baseline better,memory baseline better,score inconsistent[lightgbm, optuna]24446:18optuna:2.9.1Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time baseline better,[lightgbm, optuna]24446:19, 24446:22optuna:2.8.0, optuna:2.5.0Type A
{' optuna.integration.lightgbm.predict', ' lightgbm.train', 'lightgbm.Dataset', ' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset'}time variant better,score inconsistent[lightgbm, optuna]24446:25optuna:2.10.0Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time baseline better,memory variant better,score inconsistent[numpy, scikit-learn]24450:2, 24450:3, 24450:4, 24450:5, 24450:7, 24450:12scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time baseline better,score inconsistent[numpy, scikit-learn]24450:6scikit-learn:1.0.1Type A
{'sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', 'numpy'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]24450:8, 24450:9, 24450:10, 24450:11, 24450:13, 24450:14, 24450:15scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{'lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory variant better,score inconsistent[lightgbm, xgboost]24450:49, 24450:70, 24450:82, 24450:84, 24450:91, 24450:96, 25882:7, 25882:17, 25882:24, 25882:25, 25882:28, 25882:31, 25882:32, 25882:33, 25882:34, 25882:39, 25882:40, 25882:45, 25882:46, 25882:48xgboost:0.90, xgboost:1.1.1, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time baseline better,[category_encoders, lightgbm]24452:1, 24452:5, 24452:19, 24452:23lightgbm:3.3.1, lightgbm:2.3.1, lightgbm:3.2.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}memory baseline better,[category_encoders, lightgbm]24452:6, 24452:13, 24452:20lightgbm:2.2.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time variant better,memory baseline better,score inconsistent[category_encoders, lightgbm]24452:7, 24452:14, 24452:21, 24452:28lightgbm:2.1.2Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time variant better,[category_encoders, lightgbm]24452:9, 24452:11lightgbm:3.2.1, lightgbm:3.0.0Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time baseline better,memory baseline better,[category_encoders, lightgbm]24452:27lightgbm:2.2.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time variant better,memory variant better,[category_encoders, lightgbm]24452:29lightgbm:3.3.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}memory variant better,[category_encoders, lightgbm]24452:30, 24452:31, 24452:33, 24452:34lightgbm:3.2.1, lightgbm:3.1.1, lightgbm:2.3.1, lightgbm:2.2.3Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time baseline better,memory variant better,[category_encoders, lightgbm]24452:32lightgbm:3.0.0Type A
{' lightgbm.Dataset', ' lightgbm.train', 'category_encoders.one_hot.OneHotEncoder'}time variant better,memory variant better,score inconsistent[category_encoders, lightgbm]24452:35lightgbm:2.1.2Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}time baseline better,[category_encoders, lightgbm]24484:1lightgbm:3.3.1Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}memory baseline better,[category_encoders, lightgbm]24484:6, 24484:20lightgbm:2.2.3Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}time variant better,memory baseline better,score inconsistent[category_encoders, lightgbm]24484:7, 24484:14lightgbm:2.1.2Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}time baseline better,memory baseline better,[category_encoders, lightgbm]24484:13lightgbm:2.2.3Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}memory variant better,[category_encoders, lightgbm]24484:15, 24484:17lightgbm:3.3.1, lightgbm:3.1.1Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}time baseline better,memory variant better,[category_encoders, lightgbm]24484:16, 24484:18, 24484:19lightgbm:3.2.1, lightgbm:3.0.0, lightgbm:2.3.1Type A
{'category_encoders.james_stein.JamesSteinEncoder', ' lightgbm.Dataset', ' lightgbm.train', ' category_encoders.CountEncoder'}memory baseline better,score inconsistent[category_encoders, lightgbm]24484:21lightgbm:2.1.2Type A
{' sklearn.model_selection.KFold', 'sklearn.metrics.make_scorer', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error', ' lightgbm.fit', ' sklearn.model_selection.cross_validate'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24485:1, 24485:8, 24485:15, 24485:22, 24485:29, 24485:36, 24485:43scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{' sklearn.model_selection.KFold', 'sklearn.metrics.make_scorer', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error', ' lightgbm.fit', ' sklearn.model_selection.cross_validate'}memory variant better,score inconsistent[lightgbm, scikit-learn]24485:2, 24485:9, 24485:17, 24485:18, 24485:19, 24485:20, 24485:21, 24485:24, 24485:25, 24485:26, 24485:27, 24485:28, 24485:31, 24485:32, 24485:33, 24485:34, 24485:35scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.KFold', 'sklearn.metrics.make_scorer', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error', ' lightgbm.fit', ' sklearn.model_selection.cross_validate'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24485:3, 24485:4, 24485:5, 24485:6, 24485:7, 24485:10, 24485:11, 24485:12, 24485:13, 24485:14scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.KFold', 'sklearn.metrics.make_scorer', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error', ' lightgbm.fit', ' sklearn.model_selection.cross_validate'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]24485:16, 24485:23, 24485:30scikit-learn:0.20.3Type A
{' sklearn.model_selection.KFold', 'sklearn.metrics.make_scorer', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error', ' lightgbm.fit', ' sklearn.model_selection.cross_validate'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24485:37, 24485:44scikit-learn:0.20.3Type A
{' sklearn.model_selection.KFold', 'sklearn.metrics.make_scorer', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMRegressor', ' sklearn.metrics.mean_squared_error', ' lightgbm.fit', ' sklearn.model_selection.cross_validate'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24485:38, 24485:39, 24485:40, 24485:41, 24485:42, 24485:45, 24485:46, 24485:47, 24485:48, 24485:49scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24514:1, 24514:22, 24514:44, 24514:45, 24514:46, 24514:47, 24514:48, 24514:49scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[lightgbm, scikit-learn]24514:2, 24514:5, 24514:6, 24514:11, 24514:14, 24514:18, 24514:20, 24514:21, 24514:23, 24514:24scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]24514:3, 24514:9, 24514:12, 24514:17, 24514:26, 24514:27scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24514:4, 24514:7, 24514:10, 24514:13, 24514:16, 24514:19, 24514:25, 24514:28scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24514:8, 24514:43scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24514:15scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,[lightgbm, scikit-learn]24514:29, 24514:37, 24514:38, 24514:39scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,[lightgbm, scikit-learn]24514:30, 24514:31, 24514:32, 24514:33, 24514:34scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}memory variant better,[lightgbm, scikit-learn]24514:35scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}memory baseline better,[lightgbm, scikit-learn]24514:36scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,[lightgbm, scikit-learn]24514:40, 24514:41, 24514:42scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}time baseline better,[numpy, scikit-learn]24520:2, 24520:17scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}time variant better,[numpy, scikit-learn]24520:3, 24520:4, 24520:5, 24520:9, 24520:10, 24520:11, 24520:21scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}time variant better,score inconsistent[numpy, scikit-learn]24520:6scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}time baseline better,score inconsistent[numpy, scikit-learn]24520:7, 24520:15, 24520:22, 24520:23scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[numpy, scikit-learn]24520:8scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}score inconsistent[numpy, scikit-learn]24520:14scikit-learn:0.21.3Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]24520:16scikit-learn:0.19.2Type A
{' sklearn.model_selection.StratifiedKFold', 'numpy', 'sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[numpy, scikit-learn]24520:24scikit-learn:0.19.2Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]24528:1, 24528:2, 24528:4, 24528:5, 24528:6, 24528:8, 24528:9, 24528:10, 24528:11, 24528:12, 24528:13, 24528:14, 24528:15, 24528:17, 24528:18, 24528:19, 24528:20, 24528:21, 24528:22, 24528:23, 24528:24, 24528:25, 24528:26, 24528:27, 24528:28, 24528:29, 24528:30, 24528:31, 24528:32, 24528:33, 24528:34, 24528:35, 24528:36, 24528:37, 24528:38, 24528:39, 24528:40, 24528:41, 24528:42, 24528:43, 24528:44, 24528:45, 24528:46, 24528:47, 24528:48scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]24528:3, 24528:7, 24528:16scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24531:1, 24531:29scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24531:2, 24531:3, 24531:4, 24531:30, 24531:31, 24531:32, 24531:33, 24531:35scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[lightgbm, scikit-learn]24531:5, 24531:34scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[lightgbm, scikit-learn]24531:6, 24531:7scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,[lightgbm, scikit-learn]24531:8, 24531:15, 24531:22, 24531:36, 24531:43scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,[lightgbm, scikit-learn]24531:9, 24531:11, 24531:14, 24531:24, 24531:25, 24531:28scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}memory variant better,[lightgbm, scikit-learn]24531:10, 24531:16, 24531:17, 24531:18, 24531:21, 24531:26scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,[lightgbm, scikit-learn]24531:13, 24531:27, 24531:37, 24531:38, 24531:39, 24531:40, 24531:41, 24531:42, 24531:44, 24531:45, 24531:46, 24531:47, 24531:49scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time baseline better,[lightgbm, scikit-learn]24531:19, 24531:48scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,[lightgbm, scikit-learn]24531:23scikit-learn:0.20.3Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[lightgbm, xgboost]24556:2, 24556:8, 24941:8, 24941:15, 24941:16, 24984:7, 24984:14, 24984:21, 24984:42, 24984:49, 25363:7, 25363:13, 25363:20, 25363:21, 25363:26, 25363:27, 25363:28, 25363:33, 25363:34, 25363:41, 25363:42, 25363:46, 25363:47, 25363:48, 25363:49xgboost:1.4.2, xgboost:1.5.1, xgboost:0.90, xgboost:1.0.2, xgboost:1.1.1, xgboost:1.2.1Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}score inconsistent[lightgbm, xgboost]24556:3, 24556:4, 24556:5, 24941:5, 24941:6, 24941:24, 24941:25, 24941:33, 25363:44, 25363:45xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.4.2Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time variant better,score inconsistent[lightgbm, xgboost]24556:6, 24941:3, 24941:13, 24941:19, 24941:34, 25363:36, 25363:37, 25363:38, 25363:43xgboost:1.0.2, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.5.1, xgboost:1.4.2Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[lightgbm, xgboost]24556:7, 24556:14, 24556:17, 24556:27, 24556:32, 24556:34, 24556:35, 24556:38, 24556:39, 24556:48, 24941:4, 24941:26, 24941:39, 25363:16, 25363:29, 25363:30, 25363:31xgboost:0.90, xgboost:1.3.3, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.4.2, xgboost:1.5.1Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[lightgbm, xgboost]24556:9, 24556:29, 24556:30, 24556:36, 24556:37, 24556:44, 24941:2, 24941:29, 24941:44, 25363:4, 25363:11, 25363:18, 25363:25, 25363:39xgboost:1.4.2, xgboost:1.5.1, xgboost:1.2.1Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[lightgbm, xgboost]24556:10, 24941:17, 24941:28, 24941:35, 24984:28xgboost:1.3.3, xgboost:0.90Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, xgboost]24556:11, 24556:12, 24556:13, 24556:18, 24556:19, 24556:20, 24556:21, 24941:7, 24941:14, 24941:18, 24941:49, 24984:35xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[lightgbm, xgboost]24556:15, 24556:16, 24556:22, 24556:23, 24556:43, 24941:9, 24941:36, 24941:37, 24941:43, 25363:5, 25363:6, 25363:12, 25363:14, 25363:19, 25363:32, 25363:35, 25363:40xgboost:1.5.1, xgboost:1.4.2, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.2.1Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[lightgbm, xgboost]24556:24, 24556:25, 24556:26, 24556:28, 24556:31, 24556:33, 24556:40, 24556:41, 24556:42, 24556:45, 24556:46, 24556:47, 24556:49, 24941:20, 25363:2, 25363:3, 25363:8, 25363:9, 25363:10, 25363:15, 25363:17, 25363:22, 25363:23, 25363:24xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:0.90, xgboost:1.0.2, xgboost:1.4.2, xgboost:1.5.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,[lightgbm, scikit-learn]24565:2, 24565:7, 24565:8, 24565:9, 24565:11, 24565:14, 24565:15, 24565:18, 24565:21, 24565:22, 24565:23, 24565:28scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,[lightgbm, scikit-learn]24565:3, 24565:4, 24565:17scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time variant better,[lightgbm, scikit-learn]24565:5, 24565:6, 24565:20, 24565:27scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}memory variant better,[lightgbm, scikit-learn]24565:10, 24565:16, 24565:24, 24565:25scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.22.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]24565:29, 24565:31scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[lightgbm, scikit-learn]24565:30, 24565:32, 24565:35scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}score inconsistent[lightgbm, scikit-learn]24565:33, 24565:34scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24565:36, 24565:38, 24565:41, 24565:43, 24565:44, 24565:45, 24565:46, 24565:48, 24565:49scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'sklearn.metrics.f1_score', ' sklearn.metrics.roc_curve', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24565:37, 24565:39, 24565:40, 24565:42, 24565:47scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'pandas', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,[lightgbm, pandas]24571:2, 24571:7, 24571:8, 24571:9, 24571:13, 25011:18, 25011:21, 25011:23pandas:1.2.4, pandas:1.1.5, pandas:1.0.5, pandas:0.25.3Type A
{'pandas', ' lightgbm.LGBMClassifier'}memory variant better,[lightgbm, pandas]24571:3, 24571:15, 24571:25, 24571:26, 24571:27, 25000:1, 25000:13, 25000:19, 25011:5, 25011:6, 25011:11, 25011:13, 25011:14, 25011:16pandas:1.2.4, pandas:1.0.5, pandas:1.1.5, pandas:0.23.4, pandas:0.24.2Type A
{'pandas', ' lightgbm.LGBMClassifier'}time variant better,[lightgbm, pandas]24571:12, 24571:23, 24571:28, 24571:29, 25000:4, 25000:8, 25000:9pandas:0.23.4, pandas:0.24.2, pandas:0.25.3, pandas:1.0.5Type A
{'pandas', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,[lightgbm, pandas]24571:14, 24571:19, 24571:20, 24571:21, 25011:15, 25011:24pandas:1.1.5, pandas:1.2.4, pandas:1.0.5, pandas:0.25.3Type A
{'pandas', ' lightgbm.LGBMClassifier'}time baseline better,[lightgbm, pandas]24571:16, 24571:17, 24571:18, 24571:30, 25000:3pandas:0.25.3, pandas:0.24.2, pandas:0.23.4Type A
{'pandas', ' lightgbm.LGBMClassifier'}time variant better,memory baseline better,[lightgbm, pandas]24571:31, 24571:32, 24571:37, 24571:39, 24571:40pandas:1.2.4, pandas:1.1.5, pandas:1.0.5, pandas:0.25.3Type A
{'pandas', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,[lightgbm, pandas]24571:33, 24571:34, 24571:35, 24571:36pandas:1.0.5, pandas:0.25.3, pandas:0.24.2, pandas:0.23.4Type A
{'pandas', ' lightgbm.LGBMClassifier'}memory baseline better,[lightgbm, pandas]24571:38, 24571:41, 24571:42, 25000:32, 25000:36, 25000:42pandas:1.1.5, pandas:0.24.2, pandas:0.23.4, pandas:1.2.4Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}score inconsistent[lightgbm, optuna]24578:5optuna:2.6.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}time variant better,score inconsistent[lightgbm, optuna]24578:6, 24578:7, 24578:13optuna:2.5.0, optuna:2.4.0, optuna:2.6.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}time variant better,memory variant better,score inconsistent[lightgbm, optuna]24578:8, 24578:21, 24578:23, 24578:31, 24578:32optuna:2.3.0, optuna:2.6.0, optuna:2.4.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}time variant better,[lightgbm, optuna]24578:9, 24578:10, 24578:11, 24578:12optuna:2.10.0, optuna:2.9.1, optuna:2.8.0, optuna:2.7.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}memory variant better,score inconsistent[lightgbm, optuna]24578:14, 24578:15, 24578:16, 24578:22, 24578:24, 24578:29, 24578:30, 24578:33, 24578:34, 24578:35, 24578:36, 24578:37, 24578:38, 24578:39, 24578:40optuna:2.5.0, optuna:2.4.0, optuna:2.3.0, optuna:2.6.0, optuna:2.10.0, optuna:2.9.1, optuna:2.8.0, optuna:2.7.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}memory variant better,[lightgbm, optuna]24578:17, 24578:19, 24578:20, 24578:28optuna:2.10.0, optuna:2.8.0, optuna:2.7.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}time baseline better,memory variant better,[lightgbm, optuna]24578:18, 24578:26optuna:2.9.1Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}time variant better,memory variant better,[lightgbm, optuna]24578:25, 24578:27optuna:2.10.0, optuna:2.8.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}memory baseline better,score inconsistent[lightgbm, optuna]24578:41, 24578:42, 24578:43, 24578:44, 24578:45, 24578:46, 24578:49, 24578:50optuna:2.10.0, optuna:2.9.1, optuna:2.8.0, optuna:2.7.0, optuna:2.6.0, optuna:2.5.0Type A
{' lightgbm.train', ' optuna.create_study', 'lightgbm.Dataset', ' optuna.samplers.RandomSampler'}time baseline better,memory baseline better,score inconsistent[lightgbm, optuna]24578:47, 24578:48, 24578:51, 24578:52, 24578:53, 24578:54, 24578:55, 24578:56optuna:2.4.0, optuna:2.3.0, optuna:2.8.0, optuna:2.7.0, optuna:2.6.0, optuna:2.5.0Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.RandomForestClassifier'}time baseline better,memory variant better,[pandas, scikit-learn]24585:2, 24585:3, 24585:4, 24585:9, 24585:10, 24585:11, 24585:13, 24585:19, 24585:27, 24585:34, 24585:43scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.RandomForestClassifier'}memory variant better,[pandas, scikit-learn]24585:5, 24585:12, 24585:18, 24585:26, 24585:35, 24585:42scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.RandomForestClassifier'}time variant better,memory variant better,[pandas, scikit-learn]24585:6, 24585:7, 24585:8, 24585:14, 24585:15, 24585:16scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.RandomForestClassifier'}memory baseline better,[pandas, scikit-learn]24585:17, 24585:45scikit-learn:1.0.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.RandomForestClassifier'}time baseline better,memory baseline better,[pandas, scikit-learn]24585:20, 24585:21, 24585:25, 24585:28, 24585:29, 24585:33, 24585:36, 24585:37, 24585:41, 24585:44scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.RandomForestClassifier'}time variant better,memory baseline better,[pandas, scikit-learn]24585:22, 24585:23, 24585:24, 24585:30, 24585:31, 24585:32, 24585:38, 24585:39, 24585:40, 24585:46, 24585:47, 24585:48scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,[lightgbm, scikit-learn]24597:1, 24597:2, 24597:3, 24597:4, 24597:7, 24597:8, 24597:9, 24597:10, 24597:11, 24597:14, 24597:15, 24597:16, 24597:17, 24597:18, 24597:21, 24597:22, 24597:23, 24597:24, 24597:25, 24597:28, 24597:29, 24597:30, 24597:31, 24597:32, 24597:35scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split'}memory variant better,[pandas, scikit-learn]24597:2, 24597:4, 24597:7, 24597:13, 24597:15, 24597:18, 24597:20, 24597:21, 24597:29, 24597:30, 24597:31, 24597:35, 24597:37scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,[pandas, scikit-learn]24597:3, 24597:8, 24597:9, 24597:10, 24597:11, 24597:12, 24597:14, 24597:16, 24597:17, 24597:19, 24597:32, 24597:36, 24597:38, 24597:39, 24597:42scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}memory variant better,[lightgbm, pandas]24597:3, 24597:7, 24597:15pandas:1.0.5, pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time baseline better,[lightgbm, pandas]24597:4, 24597:10, 24597:16pandas:0.25.3Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' sklearn.preprocessing.LabelEncoder'}time variant better,[lightgbm, scikit-learn]24597:5, 24597:6, 24597:12, 24597:13, 24597:19, 24597:20, 24597:26, 24597:27, 24597:33, 24597:34scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split'}time variant better,[pandas, scikit-learn]24597:22, 24597:24, 24597:25, 24597:33, 24597:34, 24597:41scikit-learn:1.0.1Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}time variant better,[lightgbm, pandas]24597:28pandas:1.2.4Type A
{' lightgbm.train', ' lightgbm.Dataset', 'pandas'}memory baseline better,[lightgbm, pandas]24597:31, 24597:33, 24597:42pandas:1.2.4, pandas:1.0.5Type A
{' lightgbm.train', ' lightgbm.Dataset', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[lightgbm, scikit-learn]24597:36, 24597:37, 24597:38, 24597:39, 24597:40, 24597:41, 24597:42, 24597:43, 24597:44, 24597:45, 24597:46, 24597:47, 24597:48, 24597:49scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,[lightgbm, scikit-learn]24598:2, 24598:3, 24598:5, 24598:6, 24598:8, 24598:9, 24598:13, 24598:14, 24598:19, 24598:20, 24598:25, 24598:26, 24598:27, 24598:29scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[lightgbm, scikit-learn]24598:2scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,score inconsistent[lightgbm, scikit-learn]24598:3scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,[lightgbm, scikit-learn]24598:4, 24598:7, 24598:10, 24598:12, 24598:15, 24598:16scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24598:5scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24598:7scikit-learn:1.0.1Type A
{'category_encoders.LeaveOneOutEncoder', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,[category_encoders, lightgbm]24598:8, 24598:11, 24598:12, 24598:15, 24598:17, 24598:26lightgbm:3.3.1, lightgbm:3.0.0, lightgbm:2.3.1, lightgbm:3.1.1Type A
{'category_encoders.LeaveOneOutEncoder', ' lightgbm.LGBMClassifier'}memory variant better,[category_encoders, lightgbm]24598:9, 24598:33lightgbm:3.2.1, lightgbm:2.3.1Type A
{'category_encoders.LeaveOneOutEncoder', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,[category_encoders, lightgbm]24598:13, 24598:27, 24598:34lightgbm:2.2.3Type A
{'category_encoders.LeaveOneOutEncoder', ' lightgbm.LGBMClassifier'}memory baseline better,[category_encoders, lightgbm]24598:21, 24598:35lightgbm:2.1.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}memory variant better,[lightgbm, scikit-learn]24598:23scikit-learn:1.0.1Type A
{'category_encoders.LeaveOneOutEncoder', ' lightgbm.LGBMClassifier'}time baseline better,[category_encoders, lightgbm]24598:23, 24598:32lightgbm:3.2.1, lightgbm:3.0.0Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,[lightgbm, scikit-learn]24598:31, 24598:32scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedShuffleSplit', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[lightgbm, scikit-learn]24598:33, 24598:34, 24598:35, 24598:36, 24598:37, 24598:38, 24598:39, 24598:42scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}time variant better,memory baseline better,score inconsistent[lightgbm, numpy, torch]24601:1, 24601:2, 24601:3, 24601:4, 24601:5, 24601:6, 24601:7, 24601:8, 24601:9, 24601:10, 24601:12, 24601:13, 24601:14, 24601:15, 24601:16, 24601:17, 24601:18, 24601:19, 24601:20, 24601:21torch:1.9.0Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}memory baseline better,score inconsistent[lightgbm, numpy, torch]24601:11torch:1.9.0Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}score inconsistent[lightgbm, numpy, torch]24601:22, 24601:24, 24601:28torch:1.8.1Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}time baseline better,memory variant better,score inconsistent[lightgbm, numpy, torch]24601:23, 24601:25, 24601:27, 24601:29, 24601:31, 24601:33, 24601:35, 24601:37, 24601:39, 24601:41, 24601:43, 24601:45, 24601:47, 24601:49, 24601:51, 24601:53, 24601:55, 24601:57, 24601:59, 24601:61, 24601:63torch:1.7.1Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}time variant better,score inconsistent[lightgbm, numpy, torch]24601:26, 24601:30, 24601:32torch:1.8.1Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}memory variant better,score inconsistent[lightgbm, numpy, torch]24601:34, 24601:38, 24601:44, 24601:48, 24601:58, 24601:62torch:1.8.1Type A
{' torch.zeros', 'torch.mean', ' torch.nn.LogSoftmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.cuda.manual_seed', ' torch.nn.NLLLoss', ' torch.no_grad', ' torch.std', ' torch.device', ' lightgbm.LGBMClassifier', 'numpy', ' torch.nn.Embedding', ' torch.manual_seed'}time variant better,memory variant better,score inconsistent[lightgbm, numpy, torch]24601:36, 24601:40, 24601:42, 24601:46, 24601:50, 24601:52, 24601:54, 24601:56, 24601:60torch:1.8.1Type A
{'numpy', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,[lightgbm, numpy]24605:2numpy:1.19.5Type A
{'numpy', ' lightgbm.LGBMClassifier'}memory baseline better,[lightgbm, numpy]24605:3, 24605:6numpy:1.19.5Type A
{'numpy', ' lightgbm.LGBMClassifier'}time baseline better,[lightgbm, numpy]24605:8, 24605:14, 24605:18numpy:1.18.5, numpy:1.19.5Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMModel', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24610:1, 24610:8, 24610:37, 24610:39, 24610:40, 24610:41, 24610:44, 24610:45, 24610:46, 24610:48scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.21.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMModel', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24610:2, 24610:3, 24610:4, 24610:5, 24610:6, 24610:7, 24610:9, 24610:10, 24610:11, 24610:12, 24610:13, 24610:14, 24610:16, 24610:17, 24610:18, 24610:19, 24610:20, 24610:21, 24610:23, 24610:24, 24610:25, 24610:26, 24610:27, 24610:28scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMModel', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24610:15, 24610:22scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMModel', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24610:29, 24610:36, 24610:38, 24610:42, 24610:43, 24610:47, 24610:49scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMModel', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[lightgbm, scikit-learn]24610:30, 24610:33scikit-learn:0.20.3, scikit-learn:0.23.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMModel', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]24610:31, 24610:32, 24610:34, 24610:35scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,memory baseline better,score inconsistent[catboost, lightgbm, xgboost]24635:2, 24635:3, 24635:8, 24635:9, 24635:15, 24635:16, 24635:22, 24635:23, 24635:29, 24635:30, 24635:36, 24635:37, 24635:43, 24635:44, 24635:50, 24635:51, 24635:57, 24635:58, 24635:64, 24635:65, 24635:71, 24635:72, 24635:78, 24635:79, 24635:85, 24635:86, 24635:92, 24635:93, 24635:99, 24635:100, 24635:106, 24635:107, 24635:113, 24635:114, 24635:120, 24635:121, 24635:127, 24635:128, 24635:134, 24635:135, 24635:142, 24635:197, 24635:198, 24635:204, 24635:211, 24635:218, 24635:219, 24635:226, 24635:232, 24635:239, 24635:240, 24635:246, 24635:247, 24635:253, 24635:254, 24635:261, 24635:267, 24635:268, 24635:274, 24635:275, 24635:281, 24635:282, 24635:288, 24635:289xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,score inconsistent[catboost, lightgbm, xgboost]24635:4, 24635:5, 24635:6, 24635:10, 24635:11, 24635:12, 24635:13, 24635:17, 24635:18, 24635:19, 24635:20, 24635:24, 24635:25, 24635:26, 24635:27, 24635:31, 24635:32, 24635:33, 24635:34, 24635:38, 24635:39, 24635:40, 24635:41, 24635:45, 24635:46, 24635:47xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.3.3Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,score inconsistent[catboost, lightgbm, xgboost]24635:7, 24635:14, 24635:28xgboost:0.90Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}score inconsistent[catboost, lightgbm, xgboost]24635:21xgboost:0.90Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory variant better,score inconsistent[catboost, lightgbm, xgboost]24635:35, 24635:42, 24635:56, 24635:70, 24635:84, 24635:98, 24635:105, 24635:112, 24635:202, 24635:227, 24635:297, 24635:298, 24635:299, 24635:305, 24635:306, 24635:307, 24635:312, 24635:325, 24635:326, 24635:327, 24635:334, 24635:335, 24635:339, 24635:340, 24635:348, 24635:353, 24635:354, 24635:361, 24635:362, 24635:363, 24635:370, 24635:375, 24635:381, 24635:383, 24635:397, 24635:398, 24635:405xgboost:0.90, xgboost:1.0.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time variant better,memory variant better,score inconsistent[catboost, lightgbm, xgboost]24635:48, 24635:49, 24635:52, 24635:53, 24635:54, 24635:55, 24635:59, 24635:60, 24635:61, 24635:62, 24635:63, 24635:66, 24635:67, 24635:68, 24635:69, 24635:73, 24635:74, 24635:75, 24635:76, 24635:77, 24635:80, 24635:81, 24635:82, 24635:83, 24635:87, 24635:88, 24635:89, 24635:90, 24635:91, 24635:94, 24635:95, 24635:96, 24635:97, 24635:101, 24635:102, 24635:103, 24635:104, 24635:108, 24635:109, 24635:110, 24635:111, 24635:115, 24635:116, 24635:117, 24635:118, 24635:122, 24635:123, 24635:124, 24635:125, 24635:129, 24635:130, 24635:131, 24635:132, 24635:136, 24635:137, 24635:138, 24635:139, 24635:143, 24635:144, 24635:145, 24635:146, 24635:199, 24635:200, 24635:201, 24635:207, 24635:209, 24635:213, 24635:214, 24635:215, 24635:216, 24635:220, 24635:221, 24635:222, 24635:228, 24635:229, 24635:230, 24635:235, 24635:236, 24635:237, 24635:241, 24635:242, 24635:243, 24635:244, 24635:248, 24635:249, 24635:250, 24635:251, 24635:256, 24635:257, 24635:258, 24635:263, 24635:264, 24635:265, 24635:269, 24635:270, 24635:271, 24635:272, 24635:276, 24635:277, 24635:278, 24635:279, 24635:283, 24635:284, 24635:285, 24635:286, 24635:290, 24635:291, 24635:292, 24635:293, 24635:388xgboost:1.0.2, xgboost:0.90, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,memory variant better,score inconsistent[catboost, lightgbm, xgboost]24635:119, 24635:126, 24635:133, 24635:140, 24635:147, 24635:203, 24635:206, 24635:208, 24635:210, 24635:217, 24635:223, 24635:224, 24635:231, 24635:234, 24635:238, 24635:245, 24635:252, 24635:255, 24635:259, 24635:262, 24635:266, 24635:273, 24635:280, 24635:287, 24635:294, 24635:300, 24635:301, 24635:304, 24635:308, 24635:311, 24635:313, 24635:314, 24635:315, 24635:318, 24635:319, 24635:320, 24635:321, 24635:322, 24635:328, 24635:329, 24635:332, 24635:333, 24635:336, 24635:341, 24635:342, 24635:343, 24635:346, 24635:347, 24635:349, 24635:350, 24635:355, 24635:356, 24635:357, 24635:360, 24635:364, 24635:367, 24635:368, 24635:369, 24635:371, 24635:374, 24635:376, 24635:377, 24635:378, 24635:382, 24635:384, 24635:385, 24635:389, 24635:390, 24635:391, 24635:392, 24635:395, 24635:396, 24635:399, 24635:402, 24635:403, 24635:404, 24635:406, 24635:409, 24635:410, 24635:411, 24635:412, 24635:413, 24635:416, 24635:417, 24635:418, 24635:419, 24635:420, 24635:423, 24635:424, 24635:425, 24635:426, 24635:427, 24635:430, 24635:431, 24635:432, 24635:433, 24635:434, 24635:437, 24635:438, 24635:439, 24635:440, 24635:441, 24635:444, 24635:445, 24635:446, 24635:447, 24635:448, 24635:451, 24635:452, 24635:453, 24635:454, 24635:455, 24635:458, 24635:459, 24635:460, 24635:461, 24635:462, 24635:465, 24635:466, 24635:467, 24635:468, 24635:469, 24635:472, 24635:473, 24635:474, 24635:475, 24635:476, 24635:479, 24635:480, 24635:481, 24635:482, 24635:483, 24635:486, 24635:487, 24635:488, 24635:489, 24635:490xgboost:0.90, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}memory baseline better,score inconsistent[catboost, lightgbm, xgboost]24635:141, 24635:212, 24635:233, 24635:295, 24635:296, 24635:316, 24635:317, 24635:324, 24635:344, 24635:345, 24635:352, 24635:372, 24635:373, 24635:379, 24635:380, 24635:407xgboost:1.5.1, xgboost:1.4.2Type A
{'catboost.CatBoostRegressor', ' lightgbm.LGBMRegressor', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, lightgbm, xgboost]24635:205, 24635:225, 24635:260, 24635:302, 24635:303, 24635:309, 24635:310, 24635:323, 24635:330, 24635:331, 24635:337, 24635:338, 24635:351, 24635:358, 24635:359, 24635:365, 24635:366, 24635:386, 24635:387, 24635:393, 24635:394, 24635:400, 24635:401, 24635:408, 24635:414, 24635:415, 24635:421, 24635:422, 24635:428, 24635:429, 24635:435, 24635:436, 24635:442, 24635:443, 24635:449, 24635:450, 24635:456, 24635:457, 24635:463, 24635:464, 24635:470, 24635:471, 24635:477, 24635:478, 24635:484, 24635:485xgboost:1.4.2, xgboost:1.5.1Type A
{'sklearn.preprocessing.OneHotEncoder', ' lightgbm.LGBMRegressor'}memory variant better,[lightgbm, scikit-learn]24649:2, 24649:3, 24649:4, 24649:5, 24649:14, 24649:17, 24649:18, 24649:20, 24649:21, 24649:23, 24649:24, 24649:25, 24649:30, 24649:32, 24649:33, 24649:34, 24649:35scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.23.2Type A
{'sklearn.preprocessing.OneHotEncoder', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,[lightgbm, scikit-learn]24649:6, 24649:11, 24649:19, 24649:27, 24649:28, 24649:31scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.21.3Type A
{'sklearn.preprocessing.OneHotEncoder', ' lightgbm.LGBMRegressor'}time variant better,memory variant better,[lightgbm, scikit-learn]24649:7, 24649:9, 24649:10, 24649:12, 24649:13, 24649:16, 24649:26scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.preprocessing.OneHotEncoder', ' lightgbm.LGBMRegressor'}memory baseline better,[lightgbm, scikit-learn]24649:37, 24649:38, 24649:44, 24649:46, 24649:47, 24649:48scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.preprocessing.OneHotEncoder', ' lightgbm.LGBMRegressor'}time variant better,memory baseline better,[lightgbm, scikit-learn]24649:39, 24649:40, 24649:42scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'sklearn.preprocessing.OneHotEncoder', ' lightgbm.LGBMRegressor'}time baseline better,memory baseline better,[lightgbm, scikit-learn]24649:41, 24649:45, 24649:49scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.cross_val_score', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24677:1, 24677:8scikit-learn:1.0.1, scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.cross_val_score', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]24677:2, 24677:3, 24677:4, 24677:5, 24677:6, 24677:7, 24677:9, 24677:10, 24677:11, 24677:12, 24677:13, 24677:14, 24677:16, 24677:17, 24677:18, 24677:19, 24677:20, 24677:21, 24677:24, 24677:25, 24677:26, 24677:27, 24677:28scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.cross_val_score', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[lightgbm, scikit-learn]24677:15, 24677:22scikit-learn:0.19.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.cross_val_score', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[lightgbm, scikit-learn]24677:23scikit-learn:0.20.3Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.cross_val_score', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]24677:29, 24677:36, 24677:37, 24677:38, 24677:39, 24677:40, 24677:41, 24677:42, 24677:43, 24677:44, 24677:45, 24677:46, 24677:47, 24677:48, 24677:49scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.cross_val_score', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]24677:30, 24677:31, 24677:32, 24677:33, 24677:34, 24677:35scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.ensemble.RandomForestClassifier'}memory baseline better,score inconsistent[pandas, scikit-learn]24888:2, 24888:5, 24888:9, 24888:10, 24888:12, 24888:16, 24888:18, 24888:19, 24888:21, 24888:22, 24888:23, 24888:24scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.ensemble.RandomForestClassifier'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]24888:3, 24888:4, 24888:6, 24888:7, 24888:8, 24888:11, 24888:13, 24888:14, 24888:15, 24888:17, 24888:20scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.ensemble.RandomForestClassifier'}memory variant better,score inconsistent[pandas, scikit-learn]24888:25scikit-learn:1.0.1Type A
{'pandas', ' sklearn.ensemble.RandomForestClassifier'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]24888:26, 24888:27, 24888:34, 24888:35scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.ensemble.RandomForestClassifier'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]24888:28scikit-learn:0.22.1Type A
{'pandas', ' sklearn.ensemble.RandomForestClassifier'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]24888:29, 24888:30, 24888:31, 24888:32, 24888:33, 24888:36, 24888:37, 24888:38, 24888:39, 24888:40scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}memory baseline better,[pandas, scikit-learn]24919:2, 24919:6, 24919:9, 24919:17, 24919:18, 24919:25, 24919:26, 24919:33, 24919:34scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time variant better,memory baseline better,[pandas, scikit-learn]24919:3, 24919:19, 24919:27, 24919:35scikit-learn:1.0.1, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}memory variant better,[pandas, scikit-learn]24919:7, 24919:12, 24919:13, 24919:15, 24919:23, 24919:31, 24919:37, 24919:39, 24919:44, 24919:45, 24919:46, 24919:47scikit-learn:0.20.3, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time variant better,[pandas, scikit-learn]24919:11scikit-learn:0.23.2Type A
{'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time variant better,memory variant better,[pandas, scikit-learn]24919:43scikit-learn:0.23.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}score inconsistent[pandas, scikit-learn]24922:2, 24922:3, 24922:6, 24922:7, 24922:12, 24922:24scikit-learn:1.0.1, scikit-learn:0.21.3Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]24922:4, 24922:11, 24922:23scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]24922:5, 24922:16, 24922:17, 24922:28scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]24922:8, 24922:20, 24922:27scikit-learn:0.22, scikit-learn:0.22.1Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]24922:9, 24922:15, 24922:19, 24922:25scikit-learn:0.22.1, scikit-learn:0.21.3Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[pandas, scikit-learn]24922:10, 24922:22, 24922:29scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]24922:13, 24922:14, 24922:18, 24922:21, 24922:26scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.22.1Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[pandas, scikit-learn]24922:30scikit-learn:1.0.1Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}memory variant better,[lightgbm, xgboost]24941:11, 24941:32, 24941:40, 24941:45, 24984:3, 24984:15, 24984:16, 24984:20, 24984:22, 24984:23, 24984:27xgboost:1.2.1, xgboost:1.1.1, xgboost:1.3.3, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.0.2Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time baseline better,[lightgbm, xgboost]24941:21, 24941:42xgboost:0.90Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}memory baseline better,[lightgbm, xgboost]24941:22, 24941:23, 24941:30, 24984:8, 24984:9, 24984:13, 24984:31, 24984:36, 24984:37, 24984:41, 24984:43, 24984:44xgboost:1.5.1, xgboost:1.4.2, xgboost:1.0.2, xgboost:1.3.3Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time variant better,[lightgbm, xgboost]24941:46, 24941:47, 24941:48, 24984:4, 24984:5, 24984:12, 24984:32, 24984:40, 24984:46xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.linear_model.LogisticRegression', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.pipeline.Pipeline'}memory baseline better,[pandas, scikit-learn]24944:2, 24944:42scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.linear_model.LogisticRegression', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.pipeline.Pipeline'}time baseline better,[pandas, scikit-learn]24944:9, 24944:10, 24944:17, 24944:18scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.linear_model.LogisticRegression', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.pipeline.Pipeline'}time variant better,[pandas, scikit-learn]24944:25scikit-learn:1.0.1Type A
{' sklearn.metrics.accuracy_score', 'pandas', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.linear_model.LogisticRegression', ' sklearn.compose.ColumnTransformer', ' sklearn.model_selection.train_test_split', ' sklearn.impute.SimpleImputer', ' sklearn.pipeline.Pipeline'}time variant better,memory variant better,[pandas, scikit-learn]24944:33, 24944:41scikit-learn:1.0.1Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}memory variant better,score inconsistent[lightgbm, optuna]24953:2, 24953:23, 24953:37, 24953:38, 24953:41, 24953:56, 24966:2, 24966:4, 24966:6, 24966:7, 24966:8, 24966:10, 24966:25, 24966:31, 24966:39, 24966:40optuna:2.8.0, optuna:2.3.0, optuna:2.5.0, optuna:2.4.0, optuna:2.9.1, optuna:2.10.0, optuna:2.6.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time variant better,memory baseline better,score inconsistent[lightgbm, optuna]24953:3, 24953:6, 24953:15, 24953:39, 24966:42, 24966:43, 24966:49, 24966:51, 24966:54, 24966:56optuna:2.7.0, optuna:2.4.0, optuna:2.3.0, optuna:2.8.0, optuna:2.9.1, optuna:2.10.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time baseline better,[lightgbm, optuna]24953:4optuna:2.6.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time variant better,memory variant better,score inconsistent[lightgbm, optuna]24953:5, 24953:13, 24953:16, 24953:18, 24953:21, 24953:25, 24953:31, 24953:35, 24953:48, 24953:49, 24953:55, 24966:5, 24966:36optuna:2.5.0, optuna:2.7.0, optuna:2.8.0, optuna:2.9.1, optuna:2.3.0, optuna:2.10.0, optuna:2.6.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time baseline better,memory baseline better,score inconsistent[lightgbm, optuna]24953:7, 24953:8, 24953:10, 24953:24, 24953:29, 24953:32, 24953:51, 24966:16, 25018:33, 25018:42optuna:2.3.0, optuna:2.8.0, optuna:2.6.0, optuna:2.5.0, optuna:2.10.0, optuna:2.7.0, optuna:2.9.1Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time baseline better,score inconsistent[lightgbm, optuna]24953:9, 24953:26, 24953:27, 24953:52, 24953:53, 24966:32, 25018:2, 25018:3, 25018:35, 25018:37, 25018:38, 25018:39, 25018:40optuna:2.9.1, optuna:2.8.0, optuna:2.7.0, optuna:2.6.0, optuna:2.5.0, optuna:2.10.0, optuna:2.4.0, optuna:2.3.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}score inconsistent[lightgbm, optuna]24953:11, 24953:12, 24953:28, 24953:36, 24953:40, 24953:45, 24966:17, 25018:4, 25018:9, 25018:16, 25018:26, 25018:34optuna:2.7.0, optuna:2.6.0, optuna:2.10.0, optuna:2.5.0, optuna:2.9.1, optuna:2.3.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}memory baseline better,score inconsistent[lightgbm, optuna]24953:14, 24953:17, 24953:22, 24966:26, 24966:44, 25018:46, 25018:49, 25018:50, 25018:52, 25018:54optuna:2.4.0, optuna:2.9.1, optuna:2.8.0, optuna:2.6.0, optuna:2.5.0, optuna:2.10.0, optuna:2.7.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time variant better,score inconsistent[lightgbm, optuna]24953:19, 24953:20, 24953:34, 25018:1, 25018:6, 25018:7, 25018:12, 25018:18, 25018:22, 25018:24, 25018:27, 25018:30, 25018:31optuna:2.7.0, optuna:2.6.0, optuna:2.8.0, optuna:2.10.0, optuna:2.5.0, optuna:2.4.0, optuna:2.9.1, optuna:2.3.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time baseline better,memory variant better,score inconsistent[lightgbm, optuna]24953:30, 24953:42, 24953:43, 24953:46, 24953:50, 24966:13, 24966:18, 24966:20, 24966:21, 24966:30, 24966:37, 24966:38optuna:2.4.0, optuna:2.8.0, optuna:2.7.0, optuna:2.5.0, optuna:2.6.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time variant better,memory variant better,[lightgbm, optuna]24953:33, 24966:14, 24966:22, 24966:27, 24966:28, 24966:29, 24966:33, 24966:35optuna:2.9.1, optuna:2.4.0, optuna:2.7.0, optuna:2.6.0, optuna:2.5.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}memory variant better,[lightgbm, optuna]24953:44, 24966:9, 24966:15, 24966:24, 24966:34optuna:2.6.0, optuna:2.9.1, optuna:2.3.0, optuna:2.10.0, optuna:2.8.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time baseline better,memory variant better,[lightgbm, optuna]24953:47, 24953:54, 24966:3, 24966:11, 24966:19, 24966:23optuna:2.3.0, optuna:2.4.0, optuna:2.7.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time variant better,memory baseline better,[lightgbm, optuna]24966:41, 24966:46, 24966:50, 24966:53, 24966:55optuna:2.9.1, optuna:2.4.0, optuna:2.8.0, optuna:2.5.0, optuna:2.3.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}memory baseline better,[lightgbm, optuna]24966:45, 24966:48, 24966:52optuna:2.5.0, optuna:2.10.0, optuna:2.6.0Type A
{'lightgbm.LGBMClassifier', ' optuna.create_study'}time baseline better,memory baseline better,[lightgbm, optuna]24966:47optuna:2.3.0Type A
{'pandas', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.OneHotEncoder'}time variant better,memory baseline better,[pandas, scikit-learn]24969:1, 24969:2, 24969:9, 24969:10, 24969:17, 24969:18, 24969:25, 24969:26, 24969:33, 24969:34, 24969:41, 24969:42scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'pandas', ' xgboost.XGBClassifier'}time variant better,memory variant better,[pandas, xgboost]24969:3, 24969:5, 24969:10, 24969:11, 24969:12, 24969:13, 24969:24, 24969:26, 24969:27, 24969:31, 24969:32, 24969:33, 24969:34, 24969:39, 24969:40, 24969:41xgboost:1.3.3, xgboost:1.1.1, xgboost:1.2.1, xgboost:1.0.2Type A
{'pandas', ' xgboost.XGBClassifier'}memory variant better,[pandas, xgboost]24969:4, 24969:6, 24969:17, 24969:18, 24969:20, 24969:25xgboost:1.2.1, xgboost:1.0.2, xgboost:1.3.3Type A
{'pandas', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[pandas, xgboost]24969:19, 24969:38xgboost:1.1.1, xgboost:1.3.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory baseline better,[pandas, scikit-learn]24976:1, 24976:27, 24976:34scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}memory baseline better,[pandas, scikit-learn]24976:2, 24976:3, 24976:19, 24976:33, 24976:35, 24976:42scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,[pandas, scikit-learn]24976:5, 24976:7, 24976:9, 24976:15, 24976:17, 24976:23, 24976:39scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,score inconsistent[pandas, scikit-learn]24976:6scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,memory variant better,[pandas, scikit-learn]24976:8, 24976:12, 24976:13, 24976:16, 24976:24, 24976:32, 24976:40scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,memory baseline better,[pandas, scikit-learn]24976:10, 24976:11, 24976:18, 24976:26, 24976:43scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}memory variant better,[pandas, scikit-learn]24976:20, 24976:21, 24976:36scikit-learn:0.22.1, scikit-learn:0.22Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]24976:22, 24976:30, 24976:46scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,[pandas, scikit-learn]24976:28, 24976:31scikit-learn:0.22.1, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.LogisticRegression'}time baseline better,memory variant better,[pandas, scikit-learn]24976:37, 24976:41, 24976:44, 24976:45, 24976:47, 24976:48scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,score inconsistent[lightgbm, pandas]24980:24, 25011:33, 25011:34, 25011:35, 25011:37, 25011:38pandas:1.2.4, pandas:0.25.3, pandas:1.0.5, pandas:1.1.5, pandas:0.23.4, pandas:0.24.2Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[lightgbm, xgboost]24984:11, 24984:39, 24984:47xgboost:1.2.1, xgboost:1.1.1Type A
{'lightgbm.LGBMClassifier', ' xgboost.XGBClassifier'}time variant better,memory variant better,[lightgbm, xgboost]24984:18, 24984:19, 24984:25, 24984:26, 24984:33xgboost:1.2.1, xgboost:1.1.1Type A
{' lightgbm.train', 'lightgbm.Dataset', ' optuna.create_study'}memory baseline better,[lightgbm, optuna]24996:6optuna:2.4.0Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory baseline better,[lightgbm, scikit-learn]25000:6, 25011:40, 25011:47scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.23.2Type A
{'pandas', ' imblearn.over_sampling.SMOTE'}time baseline better,memory variant better,score inconsistent[imbalanced-learn, pandas]25002:2, 25002:5, 25002:9pandas:1.0.5, pandas:0.25.3, pandas:1.2.4Type A
{'pandas', ' imblearn.over_sampling.SMOTE'}time baseline better,score inconsistent[imbalanced-learn, pandas]25002:3, 25002:7, 25002:11pandas:1.1.5, pandas:1.2.4Type A
{'pandas', ' imblearn.over_sampling.SMOTE'}time baseline better,memory baseline better,score inconsistent[imbalanced-learn, pandas]25002:4, 25002:12pandas:1.2.4Type A
{'pandas', ' imblearn.over_sampling.SMOTE'}memory variant better,score inconsistent[imbalanced-learn, pandas]25002:6pandas:1.0.5Type A
{'pandas', ' imblearn.over_sampling.SMOTE'}memory baseline better,score inconsistent[imbalanced-learn, pandas]25002:8pandas:1.2.4Type A
{'pandas', ' imblearn.over_sampling.SMOTE'}time variant better,memory variant better,score inconsistent[imbalanced-learn, pandas]25002:10pandas:1.2.4Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time variant better,memory baseline better,[lightgbm, scikit-learn]25003:6scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time variant better,[lightgbm, scikit-learn]25003:7, 25003:14scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory baseline better,[lightgbm, scikit-learn]25003:13, 25003:20, 25003:27scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,[lightgbm, scikit-learn]25003:21scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory variant better,[lightgbm, scikit-learn]25003:28scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[lightgbm, scikit-learn]25003:34, 25003:41, 25003:48scikit-learn:0.24.2Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[lightgbm, scikit-learn]25003:35, 25003:42scikit-learn:1.0.1Type A
{'sklearn.metrics.roc_auc_score', ' sklearn.model_selection.KFold', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]25003:49scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time variant better,score inconsistent[lightgbm, scikit-learn]25011:2, 25011:4, 25011:9, 25011:10, 25011:17, 25011:18, 25011:23, 25011:24, 25011:25scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}score inconsistent[lightgbm, scikit-learn]25011:3, 25011:11, 25011:16, 25011:30, 25011:31, 25011:32, 25011:37, 25011:39, 25011:44, 25011:46scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.22.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]25011:5, 25011:12scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,[lightgbm, scikit-learn]25011:7, 25011:28scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory variant better,[lightgbm, scikit-learn]25011:14scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[lightgbm, scikit-learn]25011:33, 25011:42scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_curve', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.cluster.KMeans', ' lightgbm.LGBMClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[lightgbm, scikit-learn]25011:35scikit-learn:1.0.1Type A
{' lightgbm.train', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.metrics.roc_auc_score', ' lightgbm.Dataset', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', 'sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,[lightgbm, scikit-learn, xgboost]25014:1xgboost:1.5.1Type A
{' lightgbm.train', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.metrics.roc_auc_score', ' lightgbm.Dataset', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', 'sklearn.ensemble.RandomForestClassifier', ' sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[lightgbm, scikit-learn, xgboost]25014:6xgboost:1.0.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[pandas, scikit-learn]25048:1, 25048:5, 25048:6, 25048:21, 25048:44, 25048:47scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]25048:2, 25048:34, 25048:35scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[pandas, scikit-learn]25048:3, 25048:11, 25048:12, 25048:22, 25048:27, 25048:42, 25048:46scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[pandas, scikit-learn]25048:4, 25048:9, 25048:20, 25048:25, 25048:26, 25048:45scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.22Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]25048:7, 25048:24scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]25048:8, 25048:15, 25048:16, 25048:30, 25048:31, 25048:32, 25048:39, 25048:43, 25048:48scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}score inconsistent[pandas, scikit-learn]25048:10, 25048:13, 25048:14, 25048:19, 25048:28, 25048:33scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]25048:17, 25048:23, 25048:29, 25048:36, 25048:37, 25048:38, 25048:40, 25048:41scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]25048:18scikit-learn:0.24.2Type A
{' sklearn.ensemble.ExtraTreesClassifier', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier', ' xgboost.XGBClassifier'}score inconsistent[lightgbm, scikit-learn, xgboost]25061:2, 25061:3, 25061:4, 25061:6, 25061:7, 25061:11, 25061:12, 25061:13, 25061:15, 25061:16, 25061:18, 25061:19, 25061:20, 25061:21, 25061:24, 25061:26, 25061:27, 25061:30, 25061:31, 25061:32, 25061:33, 25061:35, 25061:37, 25061:38, 25061:39, 25061:40, 25061:41, 25061:45, 25061:48, 25061:49xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.1.1, xgboost:1.5.1Type A
{' sklearn.ensemble.ExtraTreesClassifier', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn, xgboost]25061:5, 25061:23, 25061:29xgboost:1.1.1, xgboost:1.4.2, xgboost:1.5.1Type A
{' sklearn.ensemble.ExtraTreesClassifier', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[lightgbm, scikit-learn, xgboost]25061:8, 25061:9, 25061:10, 25061:14, 25061:17, 25061:22, 25061:34, 25061:36, 25061:42, 25061:43, 25061:44xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:0.90, xgboost:1.0.2Type A
{' sklearn.ensemble.ExtraTreesClassifier', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[lightgbm, scikit-learn, xgboost]25061:25, 25061:28, 25061:47xgboost:1.2.1, xgboost:0.90, xgboost:1.1.1Type A
{' sklearn.ensemble.ExtraTreesClassifier', ' lightgbm.LGBMClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[lightgbm, scikit-learn, xgboost]25061:46xgboost:1.2.1Type A
{'sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory baseline better,[lightgbm, scikit-learn]25078:7, 25078:14scikit-learn:1.0.1Type A
{'sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory variant better,[lightgbm, scikit-learn]25078:20, 25078:27scikit-learn:0.24.2Type A
{'sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[lightgbm, scikit-learn]25078:34, 25078:41, 25078:48scikit-learn:0.24.2Type A
{'sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.LabelEncoder', ' lightgbm.LGBMClassifier'}score inconsistent[lightgbm, scikit-learn]25078:35, 25078:42, 25078:49scikit-learn:1.0.1Type A
{' torch.nn.LSTM', ' torch.clamp', ' torch.nn.utils.rnn.pad_packed_sequence', ' torch.max', ' torch.zeros', ' lightgbm.LGBMClassifier', ' torch.nn.utils.rnn.pack_padded_sequence', ' torch.nn.Embedding', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.nn.NLLLoss', 'torch.nn.LogSoftmax', ' torch.optim.Adam', ' torch.cuda.manual_seed', ' torch.no_grad', ' torch.sum', ' torch.ones', ' torch.manual_seed'}time variant better,score inconsistent[lightgbm, torch]25101:2, 25101:11torch:1.8.1Type A
{' torch.nn.LSTM', ' torch.clamp', ' torch.nn.utils.rnn.pad_packed_sequence', ' torch.max', ' torch.zeros', ' lightgbm.LGBMClassifier', ' torch.nn.utils.rnn.pack_padded_sequence', ' torch.nn.Embedding', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.nn.NLLLoss', 'torch.nn.LogSoftmax', ' torch.optim.Adam', ' torch.cuda.manual_seed', ' torch.no_grad', ' torch.sum', ' torch.ones', ' torch.manual_seed'}memory baseline better,score inconsistent[lightgbm, torch]25101:3, 25101:6, 25101:9, 25101:12, 25101:21torch:1.9.0Type A
{' torch.nn.LSTM', ' torch.clamp', ' torch.nn.utils.rnn.pad_packed_sequence', ' torch.max', ' torch.zeros', ' lightgbm.LGBMClassifier', ' torch.nn.utils.rnn.pack_padded_sequence', ' torch.nn.Embedding', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.nn.NLLLoss', 'torch.nn.LogSoftmax', ' torch.optim.Adam', ' torch.cuda.manual_seed', ' torch.no_grad', ' torch.sum', ' torch.ones', ' torch.manual_seed'}score inconsistent[lightgbm, torch]25101:4, 25101:5, 25101:8, 25101:14torch:1.7.1, torch:1.8.1Type A
{' torch.nn.LSTM', ' torch.clamp', ' torch.nn.utils.rnn.pad_packed_sequence', ' torch.max', ' torch.zeros', ' lightgbm.LGBMClassifier', ' torch.nn.utils.rnn.pack_padded_sequence', ' torch.nn.Embedding', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.nn.NLLLoss', 'torch.nn.LogSoftmax', ' torch.optim.Adam', ' torch.cuda.manual_seed', ' torch.no_grad', ' torch.sum', ' torch.ones', ' torch.manual_seed'}time baseline better,memory variant better,score inconsistent[lightgbm, torch]25101:7, 25101:10, 25101:13, 25101:16, 25101:19torch:1.7.1Type A
{' torch.nn.LSTM', ' torch.clamp', ' torch.nn.utils.rnn.pad_packed_sequence', ' torch.max', ' torch.zeros', ' lightgbm.LGBMClassifier', ' torch.nn.utils.rnn.pack_padded_sequence', ' torch.nn.Embedding', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.nn.NLLLoss', 'torch.nn.LogSoftmax', ' torch.optim.Adam', ' torch.cuda.manual_seed', ' torch.no_grad', ' torch.sum', ' torch.ones', ' torch.manual_seed'}time variant better,memory baseline better,score inconsistent[lightgbm, torch]25101:15, 25101:18torch:1.9.0Type A
{' torch.nn.LSTM', ' torch.clamp', ' torch.nn.utils.rnn.pad_packed_sequence', ' torch.max', ' torch.zeros', ' lightgbm.LGBMClassifier', ' torch.nn.utils.rnn.pack_padded_sequence', ' torch.nn.Embedding', ' torch.device', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.nn.NLLLoss', 'torch.nn.LogSoftmax', ' torch.optim.Adam', ' torch.cuda.manual_seed', ' torch.no_grad', ' torch.sum', ' torch.ones', ' torch.manual_seed'}memory variant better,score inconsistent[lightgbm, torch]25101:17, 25101:20torch:1.8.1Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory baseline better,score inconsistent[lightgbm, optuna]25116:2, 25116:4, 25116:6, 25116:7, 25116:8optuna:2.9.1, optuna:2.7.0, optuna:2.5.0, optuna:2.4.0, optuna:2.3.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory baseline better,score inconsistent[lightgbm, optuna]25116:3, 25116:14optuna:2.8.0, optuna:2.5.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,memory baseline better,score inconsistent[lightgbm, optuna]25116:5, 25116:9optuna:2.6.0, optuna:2.10.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory baseline better,[lightgbm, optuna]25116:10, 25116:12, 25116:13optuna:2.9.1, optuna:2.7.0, optuna:2.6.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,memory baseline better,[lightgbm, optuna]25116:11optuna:2.8.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}score inconsistent[lightgbm, optuna]25116:15, 25116:18, 25116:27, 25116:29optuna:2.4.0, optuna:2.9.1, optuna:2.8.0, optuna:2.6.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,score inconsistent[lightgbm, optuna]25116:16, 25116:17, 25116:28, 25116:30, 25116:34, 25116:37, 25116:41optuna:2.3.0, optuna:2.10.0, optuna:2.7.0, optuna:2.5.0, optuna:2.9.1, optuna:2.6.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,score inconsistent[lightgbm, optuna]25116:19, 25116:21, 25116:22, 25116:25, 25116:35, 25116:49optuna:2.8.0, optuna:2.6.0, optuna:2.5.0, optuna:2.10.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,memory variant better,score inconsistent[lightgbm, optuna]25116:23, 25116:24, 25116:40, 25116:44, 25116:47, 25116:55optuna:2.4.0, optuna:2.3.0, optuna:2.7.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,memory variant better,[lightgbm, optuna]25116:31, 25116:56optuna:2.4.0, optuna:2.3.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory variant better,score inconsistent[lightgbm, optuna]25116:32, 25116:52optuna:2.3.0, optuna:2.7.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time variant better,[lightgbm, optuna]25116:33, 25116:43, 25116:51optuna:2.10.0, optuna:2.8.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,[lightgbm, optuna]25116:36optuna:2.7.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}memory variant better,[lightgbm, optuna]25116:38, 25116:45, 25116:46, 25116:54optuna:2.5.0, optuna:2.6.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory variant better,[lightgbm, optuna]25116:39optuna:2.4.0Type A
{' optuna.visualization.plot_param_importances', 'lightgbm.LGBMClassifier', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_slice', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_contour', ' optuna.create_study', ' optuna.visualization.plot_edf'}time baseline better,memory variant better,score inconsistent[lightgbm, optuna]25116:48, 25116:53optuna:2.3.0, optuna:2.6.0Type A
{'shap', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[shap, xgboost]25132:2, 25132:3, 25132:9, 25132:10, 25132:11, 25132:12, 25132:13, 25132:15, 25132:16, 25132:18, 25132:22, 25132:24, 25132:25, 25132:27xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1Type A
{'shap', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[shap, xgboost]25132:4, 25132:5, 25132:6, 25132:8, 25132:17, 25132:19, 25132:20xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.3.3Type A
{'shap', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[shap, xgboost]25132:7, 25132:14, 25132:21, 25132:23, 25132:26, 25132:28xgboost:0.90, xgboost:1.4.2, xgboost:1.1.1Type A
{'shap', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[shap, xgboost]25132:34, 25132:48, 25132:55, 25132:62, 25132:71, 25132:72, 25132:73, 25132:80xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type A
{'shap', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[shap, xgboost]25132:35, 25132:41, 25132:42, 25132:49, 25132:56, 25132:63, 25132:77, 25132:81, 25132:84xgboost:0.90, xgboost:1.0.2, xgboost:1.2.1Type A
{'shap', ' xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[shap, xgboost]25132:74, 25132:75, 25132:76, 25132:78, 25132:79, 25132:82, 25132:83xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2Type A
{'numpy', 'catboost.CatBoostClassifier'}time variant better,memory variant better,score inconsistent[catboost, numpy]25133:1, 25133:4, 25133:7, 25133:10, 25133:16numpy:1.19.5, numpy:1.17.4Type A
{'numpy', 'catboost.CatBoostClassifier'}time variant better,score inconsistent[catboost, numpy]25133:2, 25133:5, 25133:8, 25133:11, 25133:14, 25133:17, 25477:5numpy:1.19.5, numpy:1.18.5Type A
{'numpy', 'catboost.CatBoostClassifier'}time variant better,memory baseline better,score inconsistent[catboost, numpy]25133:3, 25133:6, 25133:9, 25133:15numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostClassifier'}memory baseline better,score inconsistent[catboost, numpy]25133:12, 25133:18numpy:1.19.5Type A
{'numpy', 'catboost.CatBoostClassifier'}memory variant better,score inconsistent[catboost, numpy]25133:13numpy:1.17.4Type A
{'numpy', 'catboost.CatBoostClassifier'}time baseline better,memory variant better,score inconsistent[catboost, numpy]25133:19, 25133:22, 25133:25numpy:1.17.4Type A
{'numpy', 'catboost.CatBoostClassifier'}time baseline better,score inconsistent[catboost, numpy]25133:20, 25133:23, 25133:26numpy:1.18.5Type A
{'numpy', 'catboost.CatBoostClassifier'}time baseline better,memory baseline better,score inconsistent[catboost, numpy]25133:21, 25133:24, 25133:27numpy:1.19.5Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]25134:2, 25134:9, 25134:21, 25134:42scikit-learn:1.0.1, scikit-learn:0.20.3Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}score inconsistent[lightgbm, scikit-learn]25134:3, 25134:10, 25134:17, 25134:18, 25134:31, 25134:32, 25134:39, 25134:45, 25134:46scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.22.1Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time baseline better,score inconsistent[lightgbm, scikit-learn]25134:4, 25134:11, 25134:24scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.21.3Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}memory baseline better,score inconsistent[lightgbm, scikit-learn]25134:5, 25134:26, 25134:27, 25134:33, 25134:34scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]25134:6, 25134:12, 25134:13, 25134:19, 25134:20, 25134:40, 25134:41scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]25134:7, 25134:14, 25134:16, 25134:28, 25134:30, 25134:35, 25134:37, 25134:44scikit-learn:1.0.1, scikit-learn:0.20.3Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}memory variant better,score inconsistent[lightgbm, scikit-learn]25134:23, 25134:49scikit-learn:0.20.3, scikit-learn:1.0.1Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time variant better,score inconsistent[lightgbm, scikit-learn]25134:25, 25134:38scikit-learn:0.22.1, scikit-learn:0.21.3Type A
{' sklearn.metrics.accuracy_score', ' sklearn.feature_selection.RFE', 'sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.GridSearchCV', ' sklearn.model_selection.train_test_split', ' lightgbm.LGBMClassifier', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.pipeline.Pipeline'}time variant better,memory baseline better,score inconsistent[lightgbm, scikit-learn]25134:47, 25134:48scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}time variant better,score inconsistent[lightgbm, scikit-learn]25142:2, 25142:5, 25142:7, 25142:9, 25142:10, 25142:13, 25142:14, 25142:21scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}time baseline better,score inconsistent[lightgbm, scikit-learn]25142:3, 25142:6scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}memory variant better,score inconsistent[lightgbm, scikit-learn]25142:4scikit-learn:0.22.1Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}time variant better,memory variant better,score inconsistent[lightgbm, scikit-learn]25142:8, 25142:11, 25142:12, 25142:16, 25142:18, 25142:19, 25142:22, 25142:24, 25142:25, 25142:27, 25142:33scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,score inconsistent[lightgbm, scikit-learn]25142:15, 25142:17, 25142:20, 25142:23, 25142:26, 25142:32scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.22.1Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}score inconsistent[lightgbm, scikit-learn]25142:28scikit-learn:1.0.1Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}time baseline better,memory variant better,[lightgbm, scikit-learn]25142:29, 25142:31scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}memory variant better,[lightgbm, scikit-learn]25142:30scikit-learn:0.20.3Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}memory baseline better,[lightgbm, scikit-learn]25142:37, 25142:38scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}time baseline better,memory baseline better,score inconsistent[lightgbm, scikit-learn]25142:41scikit-learn:0.24.2Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' lightgbm.LGBMClassifier'}memory baseline better,score inconsistent[lightgbm, scikit-learn]25142:42, 25142:43, 25142:44, 25142:45, 25142:46, 25142:47, 25142:48scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[numpy, scikit-learn]25420:1, 25420:9, 25420:17scikit-learn:1.0.1Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[numpy, scikit-learn]25420:2, 25420:3, 25420:4, 25420:5, 25420:6, 25420:7, 25420:10, 25420:11, 25420:12, 25420:13, 25420:14, 25420:15, 25420:18, 25420:19, 25420:20, 25420:21, 25420:22, 25420:23scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'sklearn.preprocessing.StandardScaler', 'numpy', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[numpy, scikit-learn]25420:8, 25420:16, 25420:24, 25477:1, 25477:2, 25477:3, 25477:4, 25477:5, 25477:6scikit-learn:1.0.1, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' sklearn.preprocessing.LabelEncoder', 'numpy', ' sklearn.metrics.confusion_matrix'}score inconsistent[numpy, scikit-learn]25423:2scikit-learn:0.20.3Type A
{' sklearn.model_selection.StratifiedKFold', 'sklearn.metrics.log_loss', ' sklearn.preprocessing.LabelEncoder', 'numpy', ' sklearn.metrics.confusion_matrix'}memory baseline better,[numpy, scikit-learn]25423:5scikit-learn:0.23.2Type A
{'pandas', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.HistGradientBoostingRegressor', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]25462:1, 25462:2, 25462:9, 25462:10, 25462:17, 25462:18, 25462:25, 25462:26, 25462:33, 25462:34scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.HistGradientBoostingRegressor', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[pandas, scikit-learn]25462:3, 25462:11, 25462:19, 25462:27, 25462:35, 25462:41, 25462:42, 25462:43scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.HistGradientBoostingRegressor', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]25462:4, 25462:5, 25462:6, 25462:12, 25462:13, 25462:14, 25462:20, 25462:21, 25462:22, 25462:28, 25462:29, 25462:30, 25462:36, 25462:37, 25462:38, 25462:44, 25462:45, 25462:46scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[pandas, scikit-learn]25475:1, 25475:2, 25475:3, 25475:5, 25475:6, 25475:7, 25475:10, 25475:11, 25475:17, 25475:18, 25475:26, 25475:27, 25475:31, 25475:35scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[pandas, scikit-learn]25475:4scikit-learn:0.22.1Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[pandas, scikit-learn]25475:8, 25475:13, 25475:36, 25475:40scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}score inconsistent[pandas, scikit-learn]25475:9, 25475:14, 25475:15, 25475:19, 25475:23, 25475:25, 25475:34, 25475:39scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[pandas, scikit-learn]25475:12, 25475:16, 25475:20, 25475:21, 25475:22, 25475:28, 25475:30, 25475:32, 25475:33scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[pandas, scikit-learn]25475:24, 25475:29, 25475:37, 25475:38scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[pandas, scikit-learn]25475:41, 25475:43, 25475:44, 25475:46, 25475:48scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[pandas, scikit-learn]25475:42, 25475:45scikit-learn:0.24.2, scikit-learn:0.22Type A
{'pandas', ' sklearn.linear_model.BayesianRidge', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[pandas, scikit-learn]25475:47scikit-learn:0.20.3Type A
{'numpy', ' lightgbm.LGBMRegressor'}memory baseline better,[lightgbm, numpy]25793:2numpy:1.19.5Type A
{'numpy', ' lightgbm.LGBMRegressor'}memory variant better,[lightgbm, numpy]25793:4, 25793:10numpy:1.19.5, numpy:1.17.4Type A
{'numpy', ' lightgbm.LGBMRegressor'}time baseline better,memory variant better,[lightgbm, numpy]25793:7numpy:1.19.5Type A
{'numpy', ' lightgbm.LGBMRegressor'}time baseline better,[lightgbm, numpy]25793:17numpy:1.18.5Type A
{'numpy', ' xgboost.XGBRegressor'}memory baseline better,[numpy, xgboost]25806:1, 25806:2, 25806:3, 25806:9, 25806:15, 25806:16, 25806:17xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type A
{'numpy', ' xgboost.XGBRegressor'}time variant better,[numpy, xgboost]25806:4xgboost:1.2.1Type A
{'numpy', ' xgboost.XGBRegressor'}memory variant better,[numpy, xgboost]25806:6, 25806:7, 25806:14, 25806:21xgboost:1.0.2, xgboost:0.90Type A
{'numpy', ' xgboost.XGBRegressor'}time variant better,memory variant better,[numpy, xgboost]25806:20xgboost:1.0.2Type A
{' sklearn.linear_model.LinearRegression', ' lightgbm.LGBMClassifier', 'sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[lightgbm, scikit-learn, xgboost]1076:1, 1076:8, 1076:9, 1076:16, 1076:22, 1076:29, 1076:30, 1076:37, 1076:43xgboost:1.5.1, xgboost:1.4.2Type A
{' sklearn.linear_model.LinearRegression', ' lightgbm.LGBMClassifier', 'sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory baseline better,[lightgbm, scikit-learn, xgboost]1076:2, 1076:15, 1076:23, 1076:36, 1076:44xgboost:1.4.2, xgboost:1.5.1Type A
{' sklearn.linear_model.LinearRegression', ' lightgbm.LGBMClassifier', 'sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,[lightgbm, scikit-learn, xgboost]1076:3xgboost:1.3.3Type A
{' sklearn.linear_model.LinearRegression', ' lightgbm.LGBMClassifier', 'sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory variant better,[lightgbm, scikit-learn, xgboost]1076:4, 1076:6, 1076:12, 1076:13, 1076:18, 1076:20, 1076:25, 1076:27, 1076:31, 1076:33, 1076:34, 1076:38, 1076:39, 1076:40, 1076:41, 1076:46, 1076:47, 1076:48xgboost:1.2.1, xgboost:1.0.2, xgboost:1.1.1, xgboost:1.3.3Type A
{' sklearn.linear_model.LinearRegression', ' lightgbm.LGBMClassifier', 'sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,memory variant better,[lightgbm, scikit-learn, xgboost]1076:5, 1076:11, 1076:17, 1076:19, 1076:24, 1076:26, 1076:32, 1076:45xgboost:1.1.1, xgboost:1.2.1, xgboost:1.3.3Type A
{' sklearn.linear_model.LinearRegression', ' lightgbm.LGBMClassifier', 'sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[lightgbm, scikit-learn, xgboost]1076:7, 1076:14, 1076:21, 1076:28, 1076:35, 1076:42, 1076:49xgboost:0.90Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}time variant better,[pandas, scikit-learn]3346:2, 3346:4, 3346:10, 3346:11, 3346:16, 3346:24scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}time variant better,memory baseline better,[pandas, scikit-learn]3346:6, 3346:7, 3346:8, 3346:14, 3346:46, 3346:47scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}time variant better,memory variant better,[pandas, scikit-learn]3346:9, 3346:41, 3346:42, 3346:43, 3346:44, 3346:45, 3346:48scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}memory baseline better,[pandas, scikit-learn]3346:15scikit-learn:0.24.2Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}memory variant better,[pandas, scikit-learn]3346:17, 3346:20scikit-learn:0.19.2, scikit-learn:0.22Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}time baseline better,[pandas, scikit-learn]3346:18, 3346:26, 3346:28, 3346:34, 3346:35, 3346:37, 3346:40scikit-learn:0.20.3, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.22.1, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,[pandas, scikit-learn]3346:21, 3346:25, 3346:33scikit-learn:0.22.1, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.preprocessing.MinMaxScaler'}time baseline better,memory baseline better,[pandas, scikit-learn]3346:22, 3346:23, 3346:30, 3346:31, 3346:38, 3346:39scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}memory baseline better,[pandas, scikit-learn]19786:2, 19786:3, 19786:10, 19786:11, 19786:18, 19786:34scikit-learn:0.24.2, scikit-learn:0.23.2Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}memory variant better,[pandas, scikit-learn]19786:4, 19786:6, 19786:7, 19786:8, 19786:12, 19786:13, 19786:14, 19786:20, 19786:21, 19786:22, 19786:24, 19786:29, 19786:32scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.22Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}time baseline better,memory variant better,[pandas, scikit-learn]19786:5, 19786:28scikit-learn:0.22, scikit-learn:0.22.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}time variant better,[pandas, scikit-learn]19786:9, 19786:25, 19786:33, 19786:38, 19786:39, 19786:47, 19786:48scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}time variant better,memory variant better,[pandas, scikit-learn]19786:16, 19786:30, 19786:40scikit-learn:0.19.2, scikit-learn:0.21.3Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}time baseline better,memory baseline better,[pandas, scikit-learn]19786:19, 19786:42, 19786:43scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}time variant better,memory baseline better,[pandas, scikit-learn]19786:26, 19786:27, 19786:35, 19786:41scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type A
{'pandas', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.feature_extraction.text.CountVectorizer'}time baseline better,[pandas, scikit-learn]19786:36, 19786:44scikit-learn:0.22.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.model_selection.GroupKFold'}time variant better,[lightgbm, scikit-learn]22319:4scikit-learn:0.22.1Type A
{' lightgbm.Dataset', ' lightgbm.train', 'sklearn.model_selection.GroupKFold'}memory baseline better,[lightgbm, scikit-learn]22319:5, 22319:6scikit-learn:0.23.2, scikit-learn:0.24.2Type A
{' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' lightgbm.LGBMRegressor', 'sklearn.ensemble.VotingRegressor'}time variant better,memory baseline better,[lightgbm, scikit-learn, xgboost]23981:16, 23981:17, 23981:22, 23981:23, 23981:24, 23981:29, 23981:30, 23981:31, 23981:36, 23981:37, 23981:38, 23981:43, 23981:44, 23981:45, 23981:64, 23981:65, 23981:66, 23981:71, 23981:72, 23981:73, 23981:78, 23981:79, 23981:80, 23981:85, 23981:86, 23981:87, 23981:92, 23981:93, 23981:94, 23981:113, 23981:114, 23981:115, 23981:120, 23981:121, 23981:122xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type A
{' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' lightgbm.LGBMRegressor', 'sklearn.ensemble.VotingRegressor'}time baseline better,memory variant better,[lightgbm, scikit-learn, xgboost]23981:18, 23981:19, 23981:20, 23981:25, 23981:26, 23981:27, 23981:32, 23981:33, 23981:34, 23981:39, 23981:40, 23981:41, 23981:46, 23981:47, 23981:48, 23981:67, 23981:68, 23981:69, 23981:74, 23981:75, 23981:76, 23981:81, 23981:82, 23981:83, 23981:88, 23981:89, 23981:90, 23981:95, 23981:96, 23981:97, 23981:116, 23981:117, 23981:118, 23981:123, 23981:124, 23981:125xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type A
{' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' lightgbm.LGBMRegressor', 'sklearn.ensemble.VotingRegressor'}time variant better,memory variant better,[lightgbm, scikit-learn, xgboost]23981:21, 23981:28, 23981:35, 23981:42, 23981:49, 23981:70, 23981:77, 23981:84, 23981:91, 23981:98, 23981:119, 23981:126xgboost:0.90Type A
{' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', 'numpy', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.metrics.BinaryAccuracy'}time baseline better,[numpy, tensorflow]24564:5tensorflow:2.4.1Type A
{' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', 'numpy', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.metrics.BinaryAccuracy'}time variant better,[numpy, tensorflow]24564:6, 24564:8tensorflow:2.3.1, tensorflow:2.1.0Type A
{' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', 'numpy', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.metrics.BinaryAccuracy'}memory baseline better,[numpy, tensorflow]24564:10, 24564:12tensorflow:1.15.2, tensorflow:1.13.1Type A
{' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', 'numpy', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.metrics.BinaryAccuracy'}time variant better,memory baseline better,[numpy, tensorflow]24564:11tensorflow:1.14.0Type A
{' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', 'numpy', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.metrics.BinaryAccuracy'}memory variant better,[numpy, tensorflow]24564:13tensorflow:2.4.1Type A
{' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Model', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', ' tensorflow.keras.losses.BinaryCrossentropy', 'numpy', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.metrics.BinaryAccuracy'}time baseline better,memory variant better,[numpy, tensorflow]24564:14tensorflow:2.4.1Type A
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time variant better,memory baseline better,[scikit-learn, xgboost]1079:2, 1079:3, 1079:4, 1079:5, 1079:8, 1079:9, 1079:10, 1079:11, 1079:12, 1079:13, 1079:15, 1079:16, 1079:17, 1079:18, 1079:19, 1079:20xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.5.1, xgboost:1.0.2Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}memory baseline better,[scikit-learn, xgboost]1079:6xgboost:1.0.2Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]1079:7, 1079:14xgboost:0.90Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,score inconsistent[scikit-learn, xgboost]1079:21xgboost:0.90Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time variant better,[scikit-learn, xgboost]1079:22, 1079:23, 1079:29, 1079:31xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time variant better,memory variant better,[scikit-learn, xgboost]1079:25, 1079:36, 1079:37, 1079:38, 1079:47, 1079:48xgboost:1.2.1, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}memory variant better,[scikit-learn, xgboost]1079:26, 1079:27, 1079:32, 1079:33, 1079:34, 1079:39, 1079:40, 1079:41, 1079:43, 1079:44, 1079:45, 1079:46xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{' sklearn.impute.SimpleImputer', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]1079:28, 1079:35, 1079:42, 1079:49xgboost:0.90Type B
{' imblearn.over_sampling.SMOTE', 'category_encoders.WOEEncoder'}time baseline better,memory variant better,score inconsistent[category_encoders, imbalanced-learn]1118:1, 1118:2imbalanced-learn:0.8.1Type B
{' imblearn.over_sampling.SMOTE', 'category_encoders.WOEEncoder'}time baseline better,memory baseline better,score inconsistent[category_encoders, imbalanced-learn]1118:7, 1118:13, 1118:14, 1118:19, 1118:20, 1118:25imbalanced-learn:0.8.1, imbalanced-learn:0.7.0, imbalanced-learn:0.6.2, imbalanced-learn:0.5.0Type B
{' imblearn.over_sampling.SMOTE', 'category_encoders.WOEEncoder'}memory baseline better,score inconsistent[category_encoders, imbalanced-learn]1118:8, 1118:26imbalanced-learn:0.8.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', 'catboost.fit', ' catboost.CatBoostClassifier', ' catboost.score', ' sklearn.svm.LinearSVC', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.neighbors.KNeighborsClassifier'}memory baseline better,score inconsistent[catboost, scikit-learn]1395:2scikit-learn:0.24.2Type B
{' sklearn.ensemble.GradientBoostingClassifier', 'catboost.fit', ' catboost.CatBoostClassifier', ' catboost.score', ' sklearn.svm.LinearSVC', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.neighbors.KNeighborsClassifier'}time variant better,[catboost, scikit-learn]1395:3scikit-learn:0.23.2Type B
{' sklearn.ensemble.GradientBoostingClassifier', 'catboost.fit', ' catboost.CatBoostClassifier', ' catboost.score', ' sklearn.svm.LinearSVC', ' sklearn.ensemble.RandomForestClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.neighbors.KNeighborsClassifier'}score inconsistent[catboost, scikit-learn]1395:5, 1395:8scikit-learn:0.22, scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,[catboost, scikit-learn]1413:2, 1413:3, 1413:4, 1413:5, 1413:6, 1413:7, 1413:12, 1413:18, 1413:23, 1413:28scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.20.3Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time baseline better,[catboost, scikit-learn]1413:9, 1413:13scikit-learn:1.0.1, scikit-learn:0.22Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,[catboost, scikit-learn]1413:10, 1413:14, 1413:15, 1413:17, 1413:83, 1413:84scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.22.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[catboost, scikit-learn]1413:16, 1413:20, 1413:25, 1413:27, 1413:29, 1413:31, 1413:32, 1413:33, 1413:36, 1413:37scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.20.3Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,[catboost, scikit-learn]1413:19, 1413:21, 1413:22, 1413:24, 1413:26, 1413:34, 1413:35, 1413:38, 1413:40scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.24.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time baseline better,score inconsistent[catboost, scikit-learn]1413:41, 1413:47, 1413:50, 1413:51, 1413:56, 1413:58, 1413:61scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.19.2, scikit-learn:0.22Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[catboost, scikit-learn]1413:42, 1413:44, 1413:46, 1413:49, 1413:85, 1413:88scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[catboost, scikit-learn]1413:43, 1413:45, 1413:52, 1413:54, 1413:81, 1413:82, 1413:86scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.24.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time variant better,score inconsistent[catboost, scikit-learn]1413:48scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]1413:53, 1413:55, 1413:57, 1413:59, 1413:60, 1413:62, 1413:63, 1413:64scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time baseline better,memory baseline better,[scikit-learn, tensorflow]3104:1, 3104:2, 3104:3, 3104:5, 3104:6, 3104:7tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}memory baseline better,[scikit-learn, tensorflow]3104:4tensorflow:2.2.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time baseline better,memory variant better,[scikit-learn, tensorflow]3104:8tensorflow:1.14.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time baseline better,score inconsistent[scikit-learn, tensorflow]3104:9, 3104:10, 3104:11, 3104:14, 3104:15, 3104:18, 3104:56tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]3104:12, 3104:13, 3104:17, 3104:20, 3104:21, 3104:22, 3104:23, 3104:25, 3104:26, 3104:27, 3104:54, 3104:55tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]3104:16, 3104:19, 3104:24tensorflow:2.4.1, tensorflow:2.3.1Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}memory variant better,score inconsistent[scikit-learn, tensorflow]3104:28, 3104:29, 3104:50, 3104:51, 3104:52, 3104:53tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]3104:30, 3104:31, 3104:32, 3104:49tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]3104:33, 3104:36, 3104:37, 3104:38, 3104:39, 3104:40tensorflow:2.1.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.callbacks.EarlyStopping'}time variant better,score inconsistent[scikit-learn, tensorflow]3104:34, 3104:35tensorflow:2.1.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]3145:4tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]3145:9, 3145:10, 3145:11, 3145:12, 3145:13, 3145:14, 3145:16tensorflow:2.4.1Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time variant better,[keras, scikit-learn, tensorflow]3145:15tensorflow:2.4.1Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]3145:25tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]3145:26tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[keras, scikit-learn, tensorflow]3145:27tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]3145:28tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time baseline better,[keras, scikit-learn, tensorflow]3145:29tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]3145:30tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]3145:31tensorflow:2.2.0Type B
{' tensorflow.config.optimizer.set_jit', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' keras.layers.Dense', ' tensorflow.keras.layers.Dropout', ' keras.models.Sequential', ' keras.Model', ' keras.layers.average', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]3145:32tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[tensorflow, tensorflow_addons]3148:1, 3148:3, 3148:4, 3148:5, 3148:6, 3148:7tensorflow_addons:0.15.0, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3148:2, 3148:8tensorflow_addons:0.14.0, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,score inconsistent[tensorflow, tensorflow_addons]3148:11tensorflow_addons:0.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}score inconsistent[tensorflow, tensorflow_addons]3148:12, 3148:14, 3148:15tensorflow_addons:0.13.0, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3148:19, 3148:21, 3148:22, 3148:24, 3148:25, 3148:33, 3148:34, 3148:36tensorflow_addons:0.15.0, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.7.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,[tensorflow, tensorflow_addons]3148:20tensorflow_addons:0.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.metrics.BinaryCrossentropy', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,[tensorflow, tensorflow_addons]3148:23, 3148:26, 3148:32, 3148:35tensorflow_addons:0.11.2, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}memory variant better,score inconsistent[tensorflow, tensorflow_addons]3177:1, 3177:2, 3177:3, 3177:17tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3177:4, 3177:5, 3177:6, 3177:7, 3177:8tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,score inconsistent[tensorflow, tensorflow_addons]3177:10tensorflow_addons:0.15.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3177:11, 3177:12, 3177:13, 3177:14, 3177:15, 3177:16tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3177:32, 3177:33, 3177:34tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3177:35tensorflow_addons:0.8.3Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.models.Sequential', ' tensorflow.optimizers.Adam', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}score inconsistent[tensorflow, tensorflow_addons]3177:36tensorflow_addons:0.7.1Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[tensorflow, tensorflow_addons]3190:1, 3190:3tensorflow_addons:0.15.0, tensorflow_addons:0.13.0Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3190:2tensorflow_addons:0.14.0Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3190:4, 3190:5, 3190:6, 3190:7tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,[tensorflow, tensorflow_addons]3190:8tensorflow_addons:0.8.3Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,[tensorflow, tensorflow_addons]3190:10, 3190:11, 3190:12, 3190:13, 3190:14, 3190:15tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[tensorflow, tensorflow_addons]3190:16, 3190:17tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,[tensorflow, tensorflow_addons]3190:32, 3190:33, 3190:36tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.7.1Type B
{' tensorflow_addons.optimizers.RectifiedAdam', ' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3190:34, 3190:35tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' xgboost.XGBClassifier', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.regularizers.l1', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}time variant better,[keras, tensorflow, xgboost]3199:10xgboost:1.3.3Type B
{' xgboost.XGBClassifier', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.regularizers.l1', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}memory baseline better,[keras, tensorflow, xgboost]3199:11xgboost:1.2.1Type B
{' xgboost.XGBClassifier', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.regularizers.l1', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}score inconsistent[keras, tensorflow, xgboost]3199:12, 3199:16xgboost:1.1.1, xgboost:1.4.2Type B
{' xgboost.XGBClassifier', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.regularizers.l1', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}time baseline better,[keras, tensorflow, xgboost]3199:17xgboost:1.3.3Type B
{' xgboost.XGBClassifier', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.regularizers.l1', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}time baseline better,score inconsistent[keras, tensorflow, xgboost]3199:18xgboost:1.2.1Type B
{' xgboost.XGBClassifier', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.regularizers.l1', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}time baseline better,memory baseline better,[keras, tensorflow, xgboost]3199:19xgboost:1.1.1Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}time variant better,[scikit-learn, xgboost]3223:4, 3223:5, 3223:46, 3223:47xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}time baseline better,[scikit-learn, xgboost]3223:7, 3223:49xgboost:0.90Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}memory baseline better,[scikit-learn, xgboost]3223:8, 3223:9, 3223:10, 3223:15, 3223:16, 3223:17, 3223:20xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}time variant better,memory baseline better,[scikit-learn, xgboost]3223:11, 3223:12, 3223:13, 3223:18, 3223:19xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}time baseline better,memory baseline better,[scikit-learn, xgboost]3223:14, 3223:21xgboost:0.90Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}memory variant better,[scikit-learn, xgboost]3223:22, 3223:23, 3223:24, 3223:27, 3223:29, 3223:30, 3223:31, 3223:32, 3223:33, 3223:34, 3223:36, 3223:37, 3223:38, 3223:41, 3223:50, 3223:51, 3223:52, 3223:55xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}time variant better,memory variant better,[scikit-learn, xgboost]3223:25, 3223:26, 3223:39, 3223:40, 3223:53, 3223:54xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.preprocessing.LabelBinarizer', ' xgboost.XGBClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.decomposition.PCA', ' sklearn.multioutput.MultiOutputClassifier'}time baseline better,memory variant better,[scikit-learn, xgboost]3223:28, 3223:35, 3223:42, 3223:56xgboost:0.90Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}memory variant better,[tensorflow, tensorflow_addons]3256:11, 3256:13, 3256:16, 3256:17tensorflow_addons:0.9.1, tensorflow_addons:0.7.1, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}time baseline better,memory variant better,[tensorflow, tensorflow_addons]3256:12tensorflow_addons:0.8.3Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}time variant better,[tensorflow, tensorflow_addons]3256:14, 3256:26, 3256:32, 3256:34tensorflow_addons:0.11.2, tensorflow_addons:0.12.1, tensorflow_addons:0.9.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}time baseline better,[tensorflow, tensorflow_addons]3256:15tensorflow_addons:0.14.0Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}memory baseline better,[tensorflow, tensorflow_addons]3256:20, 3256:21, 3256:27, 3256:29, 3256:33tensorflow_addons:0.9.1, tensorflow_addons:0.8.3, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}time variant better,memory variant better,[tensorflow, tensorflow_addons]3256:23tensorflow_addons:0.11.2Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}time variant better,memory baseline better,[tensorflow, tensorflow_addons]3256:25tensorflow_addons:0.13.0Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3256:28, 3256:45tensorflow_addons:0.10.0, tensorflow_addons:0.7.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.AlphaDropout'}score inconsistent[tensorflow, tensorflow_addons]3256:43, 3256:44tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]3347:1, 3347:2, 3347:4, 3347:6tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory variant better,[scikit-learn, tensorflow]3347:3, 3347:5, 3347:8tensorflow:2.3.1, tensorflow:2.1.0, tensorflow:1.14.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory variant better,score inconsistent[scikit-learn, tensorflow]3347:7, 3347:15tensorflow:1.15.2, tensorflow:2.4.1Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]3347:9, 3347:12, 3347:13, 3347:16tensorflow:1.13.1, tensorflow:2.4.1Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,score inconsistent[scikit-learn, tensorflow]3347:10, 3347:34, 3347:35, 3347:36tensorflow:2.4.1, tensorflow:2.1.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,[scikit-learn, tensorflow]3347:11, 3347:32, 3347:38tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory variant better,[scikit-learn, tensorflow]3347:14tensorflow:2.4.1Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory baseline better,[scikit-learn, tensorflow]3347:25tensorflow:2.2.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory baseline better,[scikit-learn, tensorflow]3347:26, 3347:28, 3347:29, 3347:30tensorflow:2.2.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]3347:27, 3347:31tensorflow:2.2.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}score inconsistent[scikit-learn, tensorflow]3347:37tensorflow:2.1.0Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.KFold', ' tensorflow.keras.layers.concatenate', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.decomposition.PCA', ' tensorflow.keras.Input', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.initializers.TruncatedNormal', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,score inconsistent[scikit-learn, tensorflow]3347:40tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,[scikit-learn, tensorflow]3358:2, 3358:4, 3358:6, 3358:8tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[scikit-learn, tensorflow]3358:3, 3358:5, 3358:7tensorflow:2.3.1, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,[scikit-learn, tensorflow]3358:9, 3358:16, 3358:17, 3358:19, 3358:21, 3358:22, 3358:25, 3358:26, 3358:27, 3358:30tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,[scikit-learn, tensorflow]3358:10tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,[scikit-learn, tensorflow]3358:11tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,[scikit-learn, tensorflow]3358:12, 3358:13, 3358:14, 3358:15, 3358:18, 3358:24, 3358:29, 3358:32tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' sklearn.multioutput.MultiOutputClassifier', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[scikit-learn, xgboost]3363:2, 3363:11, 3363:16, 3363:17, 3363:18, 3363:23, 3363:24, 3363:25, 3363:31, 3363:32, 3363:37, 3363:38, 3363:39, 3363:44, 3363:45, 3363:46, 3363:52xgboost:1.4.2, xgboost:1.2.1, xgboost:1.3.3Type B
{' sklearn.multioutput.MultiOutputClassifier', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,score inconsistent[scikit-learn, xgboost]3363:3, 3363:5, 3363:9, 3363:51xgboost:1.3.3, xgboost:1.1.1, xgboost:1.4.2Type B
{' sklearn.multioutput.MultiOutputClassifier', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}score inconsistent[scikit-learn, xgboost]3363:4, 3363:30, 3363:53xgboost:1.2.1, xgboost:1.4.2Type B
{' sklearn.multioutput.MultiOutputClassifier', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,[scikit-learn, xgboost]3363:8, 3363:15xgboost:1.5.1Type B
{' sklearn.multioutput.MultiOutputClassifier', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[scikit-learn, xgboost]3363:10xgboost:1.3.3Type B
{' xgboost.XGBClassifier', 'keras.models.Model', ' keras.layers.Dense', ' keras.regularizers.l1', ' keras.layers.Input'}time variant better,score inconsistent[keras, tensorflow, xgboost]3425:2, 3425:3, 3425:4, 3425:5, 3425:8, 3425:9, 3425:10, 3425:11, 3425:12xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.5.1Type B
{' xgboost.XGBClassifier', 'keras.models.Model', ' keras.layers.Dense', ' keras.regularizers.l1', ' keras.layers.Input'}time baseline better,score inconsistent[keras, tensorflow, xgboost]3425:22, 3425:25, 3425:36, 3425:37, 3425:38, 3425:39, 3425:40, 3425:43, 3425:44, 3425:45, 3425:46xgboost:1.5.1, xgboost:1.2.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.1.1Type B
{' xgboost.XGBClassifier', 'keras.models.Model', ' keras.layers.Dense', ' keras.regularizers.l1', ' keras.layers.Input'}time baseline better,memory baseline better,score inconsistent[keras, tensorflow, xgboost]3425:23xgboost:1.4.2Type B
{' xgboost.XGBClassifier', 'keras.models.Model', ' keras.layers.Dense', ' keras.regularizers.l1', ' keras.layers.Input'}time baseline better,memory variant better,score inconsistent[keras, tensorflow, xgboost]3425:24, 3425:26xgboost:1.3.3, xgboost:1.1.1Type B
{' xgboost.XGBClassifier', 'keras.models.Model', ' keras.layers.Dense', ' keras.regularizers.l1', ' keras.layers.Input'}score inconsistent[keras, tensorflow, xgboost]3425:47xgboost:1.1.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,[scikit-learn, tensorflow]3439:2, 3439:3, 3439:4, 3439:8, 3439:40tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:1.14.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[scikit-learn, tensorflow]3439:5, 3439:6, 3439:7, 3439:9, 3439:10, 3439:11, 3439:12, 3439:13, 3439:14, 3439:15, 3439:16, 3439:17, 3439:18, 3439:19, 3439:22, 3439:23, 3439:24, 3439:25, 3439:26, 3439:27, 3439:28, 3439:29, 3439:30, 3439:31, 3439:32, 3439:33, 3439:34, 3439:35, 3439:36, 3439:37, 3439:38, 3439:39tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,[scikit-learn, tensorflow]3439:20, 3439:21tensorflow:2.3.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[scikit-learn, tensorflow]3439:41, 3439:42, 3439:43, 3439:44, 3439:45, 3439:47, 3439:48, 3439:49, 3439:51, 3439:52, 3439:53, 3439:54, 3439:55, 3439:56, 3439:71, 3439:72tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.13.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]3439:46, 3439:50, 3439:65, 3439:66, 3439:67, 3439:68, 3439:69, 3439:70tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.13.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]3439:57, 3439:58, 3439:59, 3439:60, 3439:61, 3439:62, 3439:63, 3439:64tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3460:1, 3460:3tensorflow_addons:0.15.0, tensorflow_addons:0.13.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}memory baseline better,[tensorflow, tensorflow_addons]3460:2, 3460:4, 3460:5, 3460:7, 3460:8tensorflow_addons:0.14.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3460:6tensorflow_addons:0.10.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,[tensorflow, tensorflow_addons]3460:10, 3460:11, 3460:13, 3460:15tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.12.1, tensorflow_addons:0.10.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,score inconsistent[tensorflow, tensorflow_addons]3460:12, 3460:14, 3460:16, 3460:17tensorflow_addons:0.13.0, tensorflow_addons:0.11.2, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[tensorflow, tensorflow_addons]3460:32, 3460:36, 3460:44tensorflow_addons:0.11.2, tensorflow_addons:0.7.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.convert_to_tensor', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3460:33, 3460:34, 3460:35, 3460:43, 3460:45tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3, tensorflow_addons:0.7.1Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}time variant better,memory variant better,score inconsistent[scikit-learn, torch]3474:1, 3474:2, 3474:16, 3474:17, 3474:19torch:1.7.1, torch:1.8.1Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}time variant better,score inconsistent[scikit-learn, torch]3474:3, 3474:18torch:1.9.0Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}memory baseline better,score inconsistent[scikit-learn, torch]3474:4, 3474:5, 3474:6torch:1.7.1, torch:1.8.1, torch:1.9.0Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch]3474:7, 3474:8, 3474:9torch:1.7.1, torch:1.8.1, torch:1.9.0Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}time baseline better,memory variant better,score inconsistent[scikit-learn, torch]3474:10, 3474:11torch:1.7.1, torch:1.8.1Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}score inconsistent[scikit-learn, torch]3474:12, 3474:15, 3474:21torch:1.9.0Type B
{' torch.optim.Adamax', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BCEWithLogitsLoss', ' torch.load', ' torch.cuda.empty_cache', ' torch.squeeze', ' torch.save', ' torch.device', 'sklearn.preprocessing.OneHotEncoder', ' torch.nn.Relu'}memory variant better,score inconsistent[scikit-learn, torch]3474:13, 3474:14, 3474:20torch:1.7.1, torch:1.8.1Type B
{' tensorflow.optimizers.Adam', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}memory baseline better,[tensorflow, tensorflow_addons]3483:1, 3483:4, 3483:6, 3483:7tensorflow_addons:0.15.0, tensorflow_addons:0.12.1, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1Type B
{' tensorflow.optimizers.Adam', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3483:2, 3483:3, 3483:5, 3483:8tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.11.2, tensorflow_addons:0.8.3Type B
{' tensorflow.optimizers.Adam', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time variant better,score inconsistent[tensorflow, tensorflow_addons]3483:10, 3483:11, 3483:12, 3483:16tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.9.1Type B
{' tensorflow.optimizers.Adam', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time variant better,[tensorflow, tensorflow_addons]3483:13, 3483:14, 3483:15tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0Type B
{' tensorflow.optimizers.Adam', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3483:32, 3483:33, 3483:34, 3483:36, 3483:43, 3483:44, 3483:45tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.7.1, tensorflow_addons:0.8.3Type B
{' tensorflow.optimizers.Adam', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow_addons.optimizers.Lookahead', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[tensorflow, tensorflow_addons]3483:35tensorflow_addons:0.8.3Type B
{' sklearn.multioutput.MultiOutputClassifier', 'sklearn.metrics.log_loss', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory variant better,[scikit-learn, xgboost]3504:50xgboost:1.5.1Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]3507:1, 3507:8, 3507:15, 3507:22, 3507:29, 3507:50xgboost:1.5.1Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]3507:2, 3507:3, 3507:43xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[scikit-learn, xgboost]3507:4, 3507:39, 3507:46xgboost:1.2.1Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[scikit-learn, xgboost]3507:5, 3507:10, 3507:12, 3507:17, 3507:19, 3507:24, 3507:26, 3507:31, 3507:40, 3507:45, 3507:52, 3507:54xgboost:1.1.1, xgboost:1.3.3Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]3507:9, 3507:16xgboost:1.4.2Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}memory baseline better,[scikit-learn, xgboost]3507:11, 3507:18, 3507:25, 3507:32, 3507:53xgboost:1.2.1Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}time variant better,score inconsistent[scikit-learn, xgboost]3507:23, 3507:30, 3507:51xgboost:1.4.2Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]3507:33, 3507:37, 3507:38, 3507:44, 3507:47xgboost:1.1.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.multioutput.MultiOutputClassifier', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[scikit-learn, xgboost]3507:36xgboost:1.5.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}memory variant better,[tensorflow, tensorflow_addons]3513:1, 3513:4tensorflow_addons:0.15.0, tensorflow_addons:0.12.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}time variant better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3513:10, 3513:11, 3513:13, 3513:19, 3513:20, 3513:21, 3513:23, 3513:25tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.12.1, tensorflow_addons:0.13.0, tensorflow_addons:0.11.2, tensorflow_addons:0.9.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}time variant better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3513:12tensorflow_addons:0.13.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}time variant better,memory baseline better,[tensorflow, tensorflow_addons]3513:22tensorflow_addons:0.12.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}memory variant better,score inconsistent[tensorflow, tensorflow_addons]3513:24tensorflow_addons:0.10.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}time baseline better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3513:32, 3513:33, 3513:34, 3513:44, 3513:45tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3, tensorflow_addons:0.7.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.optimizers.AdamW', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3513:43tensorflow_addons:0.9.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,[tensorflow, tensorflow_addons]3515:1, 3515:2, 3515:4, 3515:5, 3515:6, 3515:7, 3515:8tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,[tensorflow, tensorflow_addons]3515:3tensorflow_addons:0.13.0Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]3515:10, 3515:17, 3515:35, 3515:43, 3515:44, 3515:45tensorflow_addons:0.15.0, tensorflow_addons:0.8.3, tensorflow_addons:0.9.1, tensorflow_addons:0.7.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3515:11, 3515:16, 3515:33, 3515:36tensorflow_addons:0.14.0, tensorflow_addons:0.9.1, tensorflow_addons:0.10.0, tensorflow_addons:0.7.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[tensorflow, tensorflow_addons]3515:12, 3515:13, 3515:14, 3515:15, 3515:32, 3515:34tensorflow_addons:0.13.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]3515:19, 3515:20, 3515:23, 3515:25, 3515:26tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.11.2, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}score inconsistent[tensorflow, tensorflow_addons]3515:21, 3515:22tensorflow_addons:0.13.0, tensorflow_addons:0.12.1Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.metrics.auc', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[tensorflow, tensorflow_addons]3515:24tensorflow_addons:0.10.0Type B
{' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' sklearn.metrics.log_loss', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[scikit-learn, tensorflow]3531:2, 3531:4, 3531:5, 3531:6, 3531:7tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' sklearn.metrics.log_loss', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]3531:3, 3531:8tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' sklearn.metrics.log_loss', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,[scikit-learn, tensorflow]3531:9, 3531:10, 3531:11, 3531:12, 3531:13, 3531:14, 3531:16tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' sklearn.model_selection.KFold', ' sklearn.metrics.log_loss', ' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]3531:15tensorflow:2.4.1Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}score inconsistent[scikit-learn, tensorflow]8560:1, 8560:2, 8560:3, 8560:4, 8560:5, 8560:6, 8560:7, 8560:8, 8560:16, 8560:33, 8560:34, 8560:35, 8560:38, 8560:39tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.1.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,score inconsistent[scikit-learn, tensorflow]8560:9, 8560:10, 8560:11, 8560:12, 8560:13, 8560:14, 8560:15, 8560:17, 8560:18, 8560:19, 8560:20, 8560:21, 8560:22, 8560:23, 8560:24tensorflow:2.4.1, tensorflow:2.3.1Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]8560:25, 8560:27, 8560:31tensorflow:2.2.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]8560:26, 8560:29, 8560:30tensorflow:2.2.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory variant better,score inconsistent[scikit-learn, tensorflow]8560:28, 8560:32tensorflow:2.2.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory baseline better,score inconsistent[scikit-learn, tensorflow]8560:36, 8560:37, 8560:40tensorflow:2.1.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]8560:49, 8560:52, 8560:53, 8560:54, 8560:55, 8560:56tensorflow:2.0.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]8560:50, 8560:51tensorflow:2.0.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory baseline better,[scikit-learn, tensorflow]8566:2, 8566:3, 8566:7tensorflow:2.7.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory variant better,[scikit-learn, tensorflow]8566:6tensorflow:2.7.0Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,[scikit-learn, tensorflow]8566:9, 8566:10, 8566:17, 8566:18tensorflow:2.4.1, tensorflow:2.3.1Type B
{' sklearn.model_selection.KFold', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Add', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory variant better,[scikit-learn, tensorflow]8566:12, 8566:22tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.random.set_seed', ' tensorflow.optimizers.Adam', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Model', ' keras.layers.Input', ' tensorflow.keras.layers.Dense', ' keras.callbacks.EarlyStopping'}time variant better,memory variant better,score inconsistent[keras, tensorflow]8652:2tensorflow:2.4.1Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]10467:1, 10467:2, 10467:3, 10467:4, 10467:5, 10467:6, 10467:7, 10467:8tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]10467:9, 10467:13, 10467:14, 10467:17, 10467:19, 10467:22, 10467:24, 10467:34, 10467:37, 10467:39, 10467:40tensorflow:2.0.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]10467:10, 10467:11tensorflow:2.0.0, tensorflow:2.4.1Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]10467:12, 10467:15, 10467:16, 10467:18, 10467:20, 10467:21, 10467:23, 10467:33, 10467:35, 10467:36, 10467:38tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time variant better,[keras, scikit-learn, tensorflow]10467:57, 10467:58, 10467:59, 10467:60, 10467:61, 10467:62tensorflow:2.1.0Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]10467:63tensorflow:2.1.0Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]10467:64tensorflow:2.1.0Type B
{' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.model_selection.cross_val_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' keras.callbacks.EarlyStopping'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]10467:73, 10467:74, 10467:75, 10467:76, 10467:77, 10467:78, 10467:79, 10467:80tensorflow:2.0.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]10468:1, 10468:2, 10468:3, 10468:4, 10468:5, 10468:6, 10468:7, 10468:8tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]10468:9, 10468:10, 10468:11, 10468:12, 10468:13, 10468:15, 10468:73, 10468:79tensorflow:2.0.0, tensorflow:2.4.1Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]10468:14, 10468:76, 10468:80tensorflow:2.4.1, tensorflow:2.0.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]10468:16, 10468:18, 10468:22, 10468:24, 10468:38, 10468:57, 10468:62, 10468:63tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]10468:17, 10468:19, 10468:21, 10468:23, 10468:33, 10468:34, 10468:35, 10468:36, 10468:37, 10468:39, 10468:40, 10468:61, 10468:64tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]10468:20, 10468:58, 10468:59, 10468:60tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]10468:74tensorflow:2.0.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]10468:75tensorflow:2.0.0Type B
{' keras.callbacks.EarlyStopping', ' keras.callbacks.ReduceLROnPlateau', 'tensorflow.keras.layers.Dense', ' sklearn.feature_extraction.text.TfidfVectorizer', ' tensorflow.keras.layers.Dropout', ' keras.wrappers.scikit_learn.KerasRegressor', ' keras.callbacks.ModelCheckpoint', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}score inconsistent[keras, scikit-learn, tensorflow]10468:77, 10468:78tensorflow:2.0.0Type B
{' nltk.stem.PorterStemmer', 'sklearn.metrics.mean_squared_error', ' nltk.stem.WordNetLemmatizer', ' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}time variant better,memory baseline better,[nltk, scikit-learn]10471:2, 10471:3scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.PorterStemmer', 'sklearn.metrics.mean_squared_error', ' nltk.stem.WordNetLemmatizer', ' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}time variant better,memory variant better,[nltk, scikit-learn]10471:4, 10471:5scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.stem.PorterStemmer', 'sklearn.metrics.mean_squared_error', ' nltk.stem.WordNetLemmatizer', ' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}score inconsistent[nltk, scikit-learn]10471:7scikit-learn:0.20.3Type B
{' nltk.stem.PorterStemmer', 'sklearn.metrics.mean_squared_error', ' nltk.stem.WordNetLemmatizer', ' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}memory baseline better,[nltk, scikit-learn]10471:11scikit-learn:0.23.2Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}memory baseline better,[scikit-learn, xgboost]10476:1, 10476:2, 10476:8, 10476:9, 10476:10, 10476:11, 10476:12, 10476:13, 10476:14, 10476:15, 10476:16, 10476:17, 10476:18, 10476:23, 10476:29, 10476:30, 10476:36, 10476:37xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}time baseline better,[scikit-learn, xgboost]10476:3, 10476:4, 10476:5, 10476:6, 10476:7, 10476:34, 10476:35xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}time baseline better,memory baseline better,[scikit-learn, xgboost]10476:19, 10476:20, 10476:21, 10476:22xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.5.1Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}time variant better,[scikit-learn, xgboost]10476:39, 10476:40, 10476:41, 10476:50, 10476:51xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]10476:42, 10476:45, 10476:46, 10476:47, 10476:48, 10476:49, 10476:56xgboost:0.90, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]10476:43, 10476:44xgboost:1.5.1, xgboost:1.4.2Type B
{'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' sklearn.pipeline.make_pipeline', ' xgboost.XGBRegressor', ' sklearn.ensemble.GradientBoostingRegressor'}memory variant better,[scikit-learn, xgboost]10476:52, 10476:53, 10476:54, 10476:55xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.model_selection.StratifiedKFold', 'sklearn.svm.SVR', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' textblob.TextBlob'}time baseline better,[scikit-learn, textblob]10488:1, 10488:2, 10488:3, 10488:4, 10488:5, 10488:6, 10488:7, 10488:8textblob:0.9.1, textblob:0.8.4, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.10.0Type B
{' sklearn.model_selection.StratifiedKFold', 'sklearn.svm.SVR', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' textblob.TextBlob'}time baseline better,memory baseline better,[scikit-learn, textblob]10488:9, 10488:10, 10488:11, 10488:12, 10488:13, 10488:14, 10488:15, 10488:16textblob:0.9.1, textblob:0.8.4, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.10.0Type B
{' sklearn.model_selection.StratifiedKFold', 'sklearn.svm.SVR', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' textblob.TextBlob'}time variant better,memory baseline better,[scikit-learn, textblob]10488:17, 10488:18, 10488:19, 10488:20, 10488:21, 10488:22, 10488:23, 10488:24textblob:0.9.1, textblob:0.8.4, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.10.0Type B
{' sklearn.model_selection.StratifiedKFold', 'sklearn.svm.SVR', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' textblob.TextBlob'}time variant better,memory variant better,[scikit-learn, textblob]10488:25, 10488:26, 10488:27, 10488:28, 10488:29, 10488:30, 10488:31, 10488:32, 10488:33, 10488:34, 10488:35, 10488:36, 10488:37, 10488:38, 10488:40, 10488:57, 10488:58, 10488:59, 10488:60, 10488:61, 10488:62, 10488:63, 10488:64textblob:0.9.1, textblob:0.8.4, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.10.0Type B
{' sklearn.model_selection.StratifiedKFold', 'sklearn.svm.SVR', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' textblob.TextBlob'}memory variant better,[scikit-learn, textblob]10488:39textblob:0.11.1Type B
{' sklearn.model_selection.StratifiedKFold', 'sklearn.svm.SVR', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' textblob.TextBlob'}time variant better,[scikit-learn, textblob]10488:41, 10488:43, 10488:44, 10488:45, 10488:46, 10488:47, 10488:48, 10488:49, 10488:50, 10488:51, 10488:52, 10488:53, 10488:54, 10488:55, 10488:56textblob:0.9.1, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.10.0, textblob:0.8.4Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.neighbors.KNeighborsRegressor', ' nltk.stem.WordNetLemmatizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' nltk.corpus.stopwords.words'}time variant better,memory variant better,[nltk, scikit-learn, xgboost]10513:2, 10513:3, 10513:8, 10513:9, 10513:10, 10513:17, 10513:24, 10513:30, 10513:31, 10513:38xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.neighbors.KNeighborsRegressor', ' nltk.stem.WordNetLemmatizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' nltk.corpus.stopwords.words'}time variant better,memory baseline better,[nltk, scikit-learn, xgboost]10513:4, 10513:5, 10513:6, 10513:11, 10513:12, 10513:13, 10513:18, 10513:19, 10513:20, 10513:25, 10513:26, 10513:27, 10513:32, 10513:41, 10513:46, 10513:53xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.neighbors.KNeighborsRegressor', ' nltk.stem.WordNetLemmatizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' nltk.corpus.stopwords.words'}time baseline better,memory baseline better,[nltk, scikit-learn, xgboost]10513:7, 10513:14, 10513:21, 10513:28, 10513:33, 10513:35, 10513:42, 10513:47, 10513:48, 10513:49, 10513:56xgboost:0.90, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.neighbors.KNeighborsRegressor', ' nltk.stem.WordNetLemmatizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' nltk.corpus.stopwords.words'}memory variant better,[nltk, scikit-learn, xgboost]10513:15, 10513:16, 10513:22, 10513:23, 10513:29, 10513:36, 10513:43, 10513:44, 10513:45, 10513:51xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.neighbors.KNeighborsRegressor', ' nltk.stem.WordNetLemmatizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' nltk.corpus.stopwords.words'}memory baseline better,[nltk, scikit-learn, xgboost]10513:34, 10513:39, 10513:40, 10513:54, 10513:55xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.neighbors.KNeighborsRegressor', ' nltk.stem.WordNetLemmatizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' nltk.corpus.stopwords.words'}time baseline better,memory variant better,[nltk, scikit-learn, xgboost]10513:37, 10513:50, 10513:52xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.linear_model.PassiveAggressiveRegressor', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}memory baseline better,[nltk, scikit-learn]10530:2scikit-learn:0.24.2Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}score inconsistent[tensorflow, transformers]10535:2, 10535:5transformers:4.5.1, transformers:3.5.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,score inconsistent[tensorflow, transformers]10535:3transformers:4.2.2Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory baseline better,score inconsistent[tensorflow, transformers]10535:7, 10535:8, 10535:16transformers:2.11.0, transformers:2.10.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory variant better,[tensorflow, transformers]10535:9, 10535:25, 10535:30transformers:4.6.1, transformers:3.4.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory variant better,score inconsistent[tensorflow, transformers]10535:10, 10535:12, 10535:28transformers:4.5.1, transformers:4.1.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory variant better,score inconsistent[tensorflow, transformers]10535:11, 10535:14, 10535:20, 10535:22, 10535:29transformers:4.2.2, transformers:3.4.0, transformers:4.1.1, transformers:3.5.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,[tensorflow, transformers]10535:13transformers:3.5.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}memory baseline better,[tensorflow, transformers]10535:15, 10535:32transformers:2.11.0, transformers:2.10.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory variant better,[tensorflow, transformers]10535:17transformers:4.6.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory variant better,score inconsistent[tensorflow, transformers]10535:18, 10535:19transformers:4.5.1, transformers:4.2.2Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory variant better,[tensorflow, transformers]10535:21, 10535:26transformers:3.5.1, transformers:4.5.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time baseline better,memory baseline better,[tensorflow, transformers]10535:23, 10535:24transformers:2.11.0, transformers:2.10.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Input', ' tensorflow.device', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.data.Dataset.from_tensor_slices', ' transformers.AutoTokenizer.from_pretrained', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.Model'}time variant better,memory baseline better,[tensorflow, transformers]10535:31transformers:2.11.0Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}time variant better,[scikit-learn, textblob]10539:1, 10539:2, 10539:8textblob:0.9.1, textblob:0.8.4, textblob:0.10.0Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,[scikit-learn, textblob]10539:3, 10539:4, 10539:5, 10539:6textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}time variant better,memory baseline better,[scikit-learn, textblob]10539:9, 10539:10, 10539:16, 10539:17, 10539:18, 10539:24textblob:0.9.1, textblob:0.8.4, textblob:0.10.0Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory baseline better,[scikit-learn, textblob]10539:11, 10539:12, 10539:13, 10539:15, 10539:19, 10539:20, 10539:22, 10539:23textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.11.1, textblob:0.12.0Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}memory baseline better,[scikit-learn, textblob]10539:14, 10539:21textblob:0.12.0, textblob:0.13.1Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}time variant better,memory variant better,[scikit-learn, textblob]10539:25, 10539:26, 10539:32, 10539:33, 10539:34, 10539:40, 10539:41, 10539:42, 10539:48, 10539:49, 10539:50, 10539:56, 10539:57, 10539:58, 10539:64textblob:0.9.1, textblob:0.8.4, textblob:0.10.0Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,[scikit-learn, textblob]10539:27, 10539:28, 10539:29, 10539:30, 10539:31, 10539:35, 10539:36, 10539:37, 10539:38, 10539:39, 10539:43, 10539:44, 10539:51, 10539:52, 10539:59, 10539:60textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1Type B
{' sklearn.model_selection.KFold', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LassoLars', ' sklearn.linear_model.SGDRegressor', ' sklearn.linear_model.Ridge', ' sklearn.linear_model.LinearRegression', ' textblob.TextBlob', ' sklearn.linear_model.Lasso', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV', 'sklearn.preprocessing.MinMaxScaler'}memory variant better,[scikit-learn, textblob]10539:45, 10539:46, 10539:47, 10539:53, 10539:54, 10539:55, 10539:61, 10539:62, 10539:63textblob:0.13.1, textblob:0.12.0, textblob:0.11.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}memory baseline better,score inconsistent[optuna, torch]10582:3, 10582:6, 10582:9torch:1.9.0Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}time baseline better,memory variant better,[optuna, torch]10582:4, 10582:22torch:1.7.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}time variant better,[optuna, torch]10582:5, 10582:8, 10582:11, 10582:14torch:1.8.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}memory variant better,[optuna, torch]10582:7, 10582:10, 10582:19torch:1.7.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}memory baseline better,[optuna, torch]10582:12, 10582:15, 10582:24torch:1.9.0Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}memory variant better,score inconsistent[optuna, torch]10582:13torch:1.7.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}time baseline better,memory variant better,score inconsistent[optuna, torch]10582:16torch:1.7.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}time variant better,score inconsistent[optuna, torch]10582:17torch:1.8.1Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}time baseline better,memory baseline better,score inconsistent[optuna, torch]10582:18, 10582:21torch:1.9.0Type B
{' optuna.integration.lightgbm.train', ' optuna.integration.lightgbm.Dataset', ' torch.tensor', 'torch.cuda.is_available'}score inconsistent[optuna, torch]10582:20, 10582:23torch:1.8.1Type B
{' sklearn.pipeline.Pipeline', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor'}memory baseline better,[scikit-learn, xgboost]10585:2, 10585:11, 10585:12, 10585:13, 10585:18, 10585:19, 10585:22, 10585:23xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1Type B
{' sklearn.pipeline.Pipeline', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor'}time baseline better,memory variant better,[scikit-learn, xgboost]10585:3xgboost:1.3.3Type B
{' sklearn.pipeline.Pipeline', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor'}memory variant better,[scikit-learn, xgboost]10585:4, 10585:5, 10585:7, 10585:26, 10585:28, 10585:31, 10585:35xgboost:1.2.1, xgboost:1.1.1, xgboost:0.90, xgboost:1.3.3Type B
{' sklearn.pipeline.Pipeline', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]10585:6, 10585:24, 10585:25, 10585:27, 10585:32, 10585:33, 10585:34xgboost:1.0.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.pipeline.Pipeline', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,[scikit-learn, xgboost]10585:8, 10585:9, 10585:10, 10585:14, 10585:16, 10585:17, 10585:20, 10585:21xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:0.90, xgboost:1.0.2Type B
{' sklearn.pipeline.Pipeline', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.ensemble.AdaBoostRegressor', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]10585:15, 10585:29, 10585:30xgboost:1.5.1, xgboost:1.4.2Type B
{' xgboost.XGBRegressor', 'gensim.models.word2vec.Word2Vec'}memory baseline better,[gensim, xgboost]10611:1xgboost:1.5.1Type B
{' xgboost.XGBRegressor', 'gensim.models.word2vec.Word2Vec'}time baseline better,[gensim, xgboost]10611:3xgboost:1.3.3Type B
{' xgboost.XGBRegressor', 'gensim.models.word2vec.Word2Vec'}time variant better,[gensim, xgboost]10611:4xgboost:1.2.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}memory variant better,score inconsistent[spacy, tensorflow]10615:2tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}time baseline better,memory variant better,score inconsistent[spacy, tensorflow]10615:4tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}score inconsistent[spacy, tensorflow]10615:10tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}time baseline better,[spacy, tensorflow]10615:13, 10615:31tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}memory baseline better,score inconsistent[spacy, tensorflow]10615:19tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}memory baseline better,[spacy, tensorflow]10615:20tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional'}time baseline better,memory baseline better,score inconsistent[spacy, tensorflow]10615:22tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.optimizers.Adam', ' keras.Input', ' keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,score inconsistent[keras, spacy, tensorflow]10632:3tensorflow:2.7.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.optimizers.Adam', ' keras.Input', ' keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense'}score inconsistent[keras, spacy, tensorflow]10632:4, 10632:8tensorflow:2.7.0, tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.optimizers.Adam', ' keras.Input', ' keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,[keras, spacy, tensorflow]10632:5tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.optimizers.Adam', ' keras.Input', ' keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,score inconsistent[keras, spacy, tensorflow]10632:6tensorflow:2.3.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.optimizers.Adam', ' keras.Input', ' keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,[keras, spacy, tensorflow]10632:11, 10632:12tensorflow:2.4.1, tensorflow:2.3.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}memory baseline better,[nltk, scikit-learn]10640:2, 10640:3scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}memory variant better,[nltk, scikit-learn]10640:8scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}time baseline better,[scikit-learn, xgboost]10660:1, 10660:25, 10660:48xgboost:1.5.1, xgboost:1.2.1, xgboost:1.0.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}memory baseline better,[scikit-learn, xgboost]10660:3, 10660:4, 10660:10, 10660:11, 10660:13, 10660:14, 10660:18xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]10660:5, 10660:12, 10660:19, 10660:20xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}time variant better,[scikit-learn, xgboost]10660:6, 10660:8, 10660:15, 10660:33, 10660:34, 10660:43, 10660:47xgboost:1.0.2, xgboost:1.5.1, xgboost:1.1.1Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}time baseline better,memory baseline better,[scikit-learn, xgboost]10660:17, 10660:21xgboost:1.3.3, xgboost:0.90Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]10660:22, 10660:29, 10660:36, 10660:40, 10660:41, 10660:50, 10660:55xgboost:1.5.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}memory variant better,[scikit-learn, xgboost]10660:23, 10660:30, 10660:37, 10660:42, 10660:44, 10660:51, 10660:52, 10660:53, 10660:56xgboost:1.4.2, xgboost:0.90, xgboost:1.3.3, xgboost:1.2.1Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' xgboost.sklearn.XGBRegressor'}time baseline better,memory variant better,[scikit-learn, xgboost]10660:28, 10660:35, 10660:54xgboost:0.90, xgboost:1.1.1Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,[keras, tensorflow]10707:2tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory baseline better,score inconsistent[keras, tensorflow]10707:3, 10707:11, 10707:13, 10707:31tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}memory baseline better,[keras, tensorflow]10707:4, 10707:27tensorflow:2.7.0, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory variant better,score inconsistent[keras, tensorflow]10707:5, 10707:7, 10707:19, 10707:23tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory variant better,[keras, tensorflow]10707:6tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}memory variant better,score inconsistent[keras, tensorflow]10707:8, 10707:9, 10707:10tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}memory baseline better,score inconsistent[keras, tensorflow]10707:12, 10707:15tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory baseline better,[keras, tensorflow]10707:14, 10707:16tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}memory variant better,[spacy, tensorflow]10720:2, 10720:3tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory variant better,[spacy, tensorflow]10720:4tensorflow:2.2.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory variant better,score inconsistent[spacy, tensorflow]10720:5tensorflow:2.1.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time baseline better,memory variant better,score inconsistent[spacy, tensorflow]10720:7, 10720:8tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,[spacy, tensorflow]10720:10tensorflow:2.7.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}score inconsistent[spacy, tensorflow]10720:14tensorflow:2.1.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time baseline better,score inconsistent[spacy, tensorflow]10720:16, 10720:17tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}memory baseline better,[spacy, tensorflow]10720:19, 10720:20, 10720:21, 10720:22tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}memory baseline better,score inconsistent[spacy, tensorflow]10720:23, 10720:29, 10720:30, 10720:31, 10720:32tensorflow:2.1.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time baseline better,memory baseline better,score inconsistent[spacy, tensorflow]10720:25, 10720:26, 10720:34, 10720:35tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.GRU', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory baseline better,score inconsistent[spacy, tensorflow]10720:28tensorflow:2.7.0Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}score inconsistent[nltk, scikit-learn]10725:1, 10725:4, 10725:9, 10725:12, 10725:20, 10725:21, 10725:25scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}memory baseline better,score inconsistent[nltk, scikit-learn]10725:2, 10725:3, 10725:10, 10725:11, 10725:18, 10725:19, 10725:26, 10725:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}time variant better,score inconsistent[nltk, scikit-learn]10725:5scikit-learn:0.22Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]10725:6, 10725:7, 10725:8, 10725:14, 10725:16, 10725:22, 10725:23, 10725:24, 10725:30, 10725:31, 10725:32scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}time baseline better,score inconsistent[nltk, scikit-learn]10725:13, 10725:17scikit-learn:0.22, scikit-learn:1.0.1Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}memory variant better,score inconsistent[nltk, scikit-learn]10725:15, 10725:28scikit-learn:0.20.3, scikit-learn:0.22.1Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', 'sklearn.decomposition.TruncatedSVD', ' nltk.corpus.stopwords.words', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]10725:29scikit-learn:0.22Type B
{' sklearn.ensemble.BaggingRegressor', ' sklearn.neighbors.KNeighborsRegressor', 'sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.GradientBoostingRegressor', ' sklearn.ensemble.ExtraTreesRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]10736:1xgboost:1.5.1Type B
{' sklearn.ensemble.BaggingRegressor', ' sklearn.neighbors.KNeighborsRegressor', 'sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.GradientBoostingRegressor', ' sklearn.ensemble.ExtraTreesRegressor'}memory baseline better,[scikit-learn, xgboost]10736:2xgboost:1.4.2Type B
{' sklearn.ensemble.BaggingRegressor', ' sklearn.neighbors.KNeighborsRegressor', 'sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.GradientBoostingRegressor', ' sklearn.ensemble.ExtraTreesRegressor'}memory variant better,[scikit-learn, xgboost]10736:4, 10736:6xgboost:1.2.1, xgboost:1.0.2Type B
{' sklearn.ensemble.BaggingRegressor', ' sklearn.neighbors.KNeighborsRegressor', 'sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.GradientBoostingRegressor', ' sklearn.ensemble.ExtraTreesRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]10736:5xgboost:1.1.1Type B
{' sklearn.ensemble.BaggingRegressor', ' sklearn.neighbors.KNeighborsRegressor', 'sklearn.svm.SVR', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.GradientBoostingRegressor', ' sklearn.ensemble.ExtraTreesRegressor'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]10736:7xgboost:0.90Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}time variant better,[scikit-learn, textblob]10748:6textblob:0.12.0Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, textblob]10748:9, 10748:10, 10748:11, 10748:12, 10748:13, 10748:14, 10748:15, 10748:16, 10748:17, 10748:18, 10748:20, 10748:21, 10748:22, 10748:24textblob:0.9.1, textblob:0.8.4, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.10.0Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[scikit-learn, textblob]10748:19textblob:0.17.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[scikit-learn, textblob]10748:23textblob:0.11.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, textblob]10748:25, 10748:26, 10748:27, 10748:28, 10748:29, 10748:32, 10748:33, 10748:35, 10748:36, 10748:38, 10748:39, 10748:43, 10748:45, 10748:46, 10748:47, 10748:48textblob:0.9.1, textblob:0.8.4, textblob:0.17.1, textblob:0.15.3, textblob:0.13.1, textblob:0.10.0, textblob:0.12.0, textblob:0.11.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,[scikit-learn, textblob]10748:30, 10748:31, 10748:34, 10748:37, 10748:40, 10748:41, 10748:42textblob:0.12.0, textblob:0.11.1, textblob:0.8.4, textblob:0.13.1, textblob:0.10.0, textblob:0.9.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.tree.DecisionTreeRegressor', ' textblob.TextBlob', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[scikit-learn, textblob]10748:44textblob:0.15.3Type B
{' xgboost.XGBRFRegressor', ' gensim.models.doc2vec.TaggedDocument', ' xgboost.XGBRegressor', 'gensim.models.doc2vec.Doc2Vec'}time variant better,memory variant better,[gensim, xgboost]10755:3, 10755:5xgboost:1.3.3, xgboost:1.1.1Type B
{' xgboost.XGBRFRegressor', ' gensim.models.doc2vec.TaggedDocument', ' xgboost.XGBRegressor', 'gensim.models.doc2vec.Doc2Vec'}memory variant better,[gensim, xgboost]10755:4, 10755:6, 10755:7xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90Type B
{' xgboost.XGBRFRegressor', ' gensim.models.doc2vec.TaggedDocument', ' xgboost.XGBRegressor', 'gensim.models.doc2vec.Doc2Vec'}memory baseline better,score inconsistent[gensim, xgboost]10755:8xgboost:1.5.1Type B
{' xgboost.XGBRFRegressor', ' gensim.models.doc2vec.TaggedDocument', ' xgboost.XGBRegressor', 'gensim.models.doc2vec.Doc2Vec'}time baseline better,memory baseline better,[gensim, xgboost]10755:9xgboost:1.4.2Type B
{' xgboost.XGBRFRegressor', ' gensim.models.doc2vec.TaggedDocument', ' xgboost.XGBRegressor', 'gensim.models.doc2vec.Doc2Vec'}time baseline better,[gensim, xgboost]10755:14xgboost:0.90Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' xgboost.fit', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', 'sklearn.preprocessing.StandardScaler', ' xgboost.predict'}memory baseline better,[scikit-learn, xgboost]10758:2, 10758:8, 10758:9, 10758:10, 10758:11, 10758:12, 10758:13, 10758:14, 10758:15, 10758:16, 10758:18, 10758:19, 10758:20, 10758:23, 10758:29, 10758:30, 10758:36, 10758:37, 10758:43, 10758:44xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' xgboost.fit', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', 'sklearn.preprocessing.StandardScaler', ' xgboost.predict'}memory variant better,[scikit-learn, xgboost]10758:5, 10758:7, 10758:24, 10758:26, 10758:27, 10758:28, 10758:32, 10758:33, 10758:34, 10758:35, 10758:38, 10758:39, 10758:40, 10758:41, 10758:45, 10758:46, 10758:47, 10758:48, 10758:49, 10758:52, 10758:54, 10758:55, 10758:56xgboost:1.1.1, xgboost:0.90, xgboost:1.3.3, xgboost:1.0.2, xgboost:1.2.1Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' xgboost.fit', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', 'sklearn.preprocessing.StandardScaler', ' xgboost.predict'}time baseline better,memory variant better,[scikit-learn, xgboost]10758:6, 10758:25, 10758:53xgboost:1.0.2, xgboost:1.2.1Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' xgboost.fit', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', 'sklearn.preprocessing.StandardScaler', ' xgboost.predict'}time baseline better,memory baseline better,[scikit-learn, xgboost]10758:17, 10758:21, 10758:22xgboost:1.3.3, xgboost:0.90, xgboost:1.5.1Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' xgboost.fit', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', 'sklearn.preprocessing.StandardScaler', ' xgboost.predict'}time variant better,memory variant better,[scikit-learn, xgboost]10758:31, 10758:42xgboost:1.3.3, xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' xgboost.XGBRFRegressor'}memory baseline better,[scikit-learn, xgboost]10761:3, 10761:4, 10761:5, 10761:6, 10761:7, 10761:10, 10761:11, 10761:12, 10761:13, 10761:14, 10761:17, 10761:18, 10761:19, 10761:20, 10761:21xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' xgboost.XGBRFRegressor'}memory variant better,[scikit-learn, xgboost]10761:8, 10761:9, 10761:15, 10761:16, 10761:22, 10761:23, 10761:29, 10761:30, 10761:36, 10761:37, 10761:43, 10761:44, 10761:50, 10761:51, 10761:52, 10761:55, 10761:56xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' xgboost.XGBRFRegressor'}time baseline better,[scikit-learn, xgboost]10761:32, 10761:48xgboost:1.2.1, xgboost:1.0.2Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' xgboost.XGBRFRegressor'}time baseline better,memory variant better,[scikit-learn, xgboost]10761:53xgboost:1.2.1Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' xgboost.XGBRFRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]10761:54xgboost:1.1.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}memory variant better,score inconsistent[scikit-learn, spacy, torch]10763:2, 10763:3, 10763:4, 10763:5, 10763:6, 10763:7, 10763:10, 10763:12, 10763:16, 10763:18, 10763:19, 10763:20, 10763:22, 10763:24, 10763:43torch:1.9.0, torch:1.7.1, torch:1.8.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}time variant better,memory variant better,score inconsistent[scikit-learn, spacy, torch]10763:8, 10763:9, 10763:11, 10763:13, 10763:14, 10763:15, 10763:17, 10763:21, 10763:23, 10763:25, 10763:26, 10763:27, 10763:28, 10763:29, 10763:30, 10763:31, 10763:32, 10763:33, 10763:34, 10763:35, 10763:36, 10763:37, 10763:38, 10763:39, 10763:40, 10763:41, 10763:42, 10763:44, 10763:45, 10763:46, 10763:47, 10763:48torch:1.9.0, torch:1.8.1, torch:1.7.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}time variant better,memory baseline better,score inconsistent[scikit-learn, spacy, torch]10763:49, 10763:50, 10763:51, 10763:52, 10763:53, 10763:54, 10763:55, 10763:57, 10763:58, 10763:59, 10763:64, 10763:65, 10763:78torch:1.9.0, torch:1.8.1, torch:1.7.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}memory baseline better,score inconsistent[scikit-learn, spacy, torch]10763:56, 10763:60, 10763:61, 10763:62, 10763:63, 10763:66, 10763:67, 10763:71torch:1.9.0, torch:1.7.1, torch:1.8.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}time baseline better,memory baseline better,score inconsistent[scikit-learn, spacy, torch]10763:68, 10763:69, 10763:70, 10763:72, 10763:73, 10763:75, 10763:76, 10763:77, 10763:79, 10763:80torch:1.7.1, torch:1.8.1, torch:1.9.0Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}time variant better,memory baseline better,[scikit-learn, spacy, torch]10763:81, 10763:84, 10763:85torch:1.8.1, torch:1.7.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}memory baseline better,[scikit-learn, spacy, torch]10763:82, 10763:83torch:1.7.1, torch:1.8.1Type B
{' torch.optim.SGD', ' torch.nn.MSELoss', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', ' torch.no_grad', 'spacy.load', ' torch.nn.Relu'}time baseline better,memory baseline better,[scikit-learn, spacy, torch]10763:86, 10763:87, 10763:88, 10763:89, 10763:90, 10763:91, 10763:92, 10763:93, 10763:94, 10763:95, 10763:96torch:1.7.1, torch:1.8.1Type B
{' sklearn.model_selection.KFold', 'sklearn.svm.SVR', ' nltk.tokenize.word_tokenize', ' sklearn.metrics.mean_squared_error', ' nltk.tokenize.sent_tokenize', ' nltk.corpus.stopwords.words'}time baseline better,memory baseline better,[nltk, scikit-learn]10765:2scikit-learn:0.24.2Type B
{' sklearn.model_selection.KFold', 'sklearn.svm.SVR', ' nltk.tokenize.word_tokenize', ' sklearn.metrics.mean_squared_error', ' nltk.tokenize.sent_tokenize', ' nltk.corpus.stopwords.words'}memory baseline better,[nltk, scikit-learn]10765:3scikit-learn:0.23.2Type B
{' sklearn.model_selection.KFold', 'sklearn.svm.SVR', ' nltk.tokenize.word_tokenize', ' sklearn.metrics.mean_squared_error', ' nltk.tokenize.sent_tokenize', ' nltk.corpus.stopwords.words'}time variant better,[nltk, scikit-learn]10765:5scikit-learn:0.22Type B
{' sklearn.model_selection.KFold', 'sklearn.svm.SVR', ' nltk.tokenize.word_tokenize', ' sklearn.metrics.mean_squared_error', ' nltk.tokenize.sent_tokenize', ' nltk.corpus.stopwords.words'}time variant better,score inconsistent[nltk, scikit-learn]10765:6scikit-learn:0.21.3Type B
{' sklearn.model_selection.KFold', 'sklearn.svm.SVR', ' nltk.tokenize.word_tokenize', ' sklearn.metrics.mean_squared_error', ' nltk.tokenize.sent_tokenize', ' nltk.corpus.stopwords.words'}score inconsistent[nltk, scikit-learn]10765:7scikit-learn:0.20.3Type B
{' sklearn.model_selection.KFold', 'sklearn.svm.SVR', ' nltk.tokenize.word_tokenize', ' sklearn.metrics.mean_squared_error', ' nltk.tokenize.sent_tokenize', ' nltk.corpus.stopwords.words'}memory variant better,score inconsistent[nltk, scikit-learn]10765:8scikit-learn:0.19.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', 'spacy.load', ' sklearn.model_selection.GridSearchCV'}memory baseline better,[scikit-learn, spacy]10797:2spacy:3.0.6Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.Ridge', 'spacy.load', ' sklearn.model_selection.GridSearchCV'}time baseline better,[scikit-learn, spacy]10797:5spacy:3.0.6Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}time baseline better,[scikit-learn, xgboost]10802:2, 10802:3, 10802:4, 10802:6, 10802:7, 10802:15xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.5.1Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}time baseline better,memory baseline better,[scikit-learn, xgboost]10802:10, 10802:11, 10802:13xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}memory baseline better,[scikit-learn, xgboost]10802:12, 10802:14, 10802:17, 10802:18, 10802:19, 10802:20, 10802:21xgboost:1.1.1, xgboost:0.90, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}memory variant better,[scikit-learn, xgboost]10802:16, 10802:22, 10802:23, 10802:24, 10802:25, 10802:26, 10802:27, 10802:28, 10802:29, 10802:30, 10802:31, 10802:32, 10802:33, 10802:34, 10802:35xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]10802:36, 10802:37, 10802:38, 10802:39, 10802:40, 10802:41, 10802:42xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]10802:43, 10802:44, 10802:45, 10802:46, 10802:47, 10802:48, 10802:49, 10802:52, 10802:53, 10802:54, 10802:55, 10802:56xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.tree.DecisionTreeRegressor'}time variant better,[scikit-learn, xgboost]10802:50, 10802:51xgboost:1.5.1, xgboost:1.4.2Type B
{' spacy.explain', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.RMSprop'}memory baseline better,[spacy, tensorflow]10811:19tensorflow:2.3.1Type B
{' spacy.explain', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.RMSprop'}time baseline better,memory baseline better,[spacy, tensorflow]10811:20tensorflow:2.4.1Type B
{' spacy.explain', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.metrics.RootMeanSquaredError', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.RMSprop'}time baseline better,score inconsistent[spacy, tensorflow]10811:21, 10811:30tensorflow:2.3.1Type B
{' nltk.WordNetLemmatizer', 'sklearn.linear_model.Ridge', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]10835:30scikit-learn:0.21.3Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time variant better,score inconsistent[catboost, scikit-learn]10844:1scikit-learn:1.0.1Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]10844:2, 10844:3scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]10844:4, 10844:5, 10844:6, 10844:7, 10844:8scikit-learn:0.22.1, scikit-learn:1.0.1Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time variant better,[catboost, scikit-learn]10844:9, 10844:17, 10844:25, 10844:33, 10844:41scikit-learn:1.0.1Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,[catboost, scikit-learn]10844:10, 10844:11, 10844:18, 10844:19, 10844:26, 10844:27, 10844:34, 10844:35, 10844:42, 10844:43scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,[catboost, scikit-learn]10844:12, 10844:13, 10844:14, 10844:15, 10844:16, 10844:20, 10844:21, 10844:22, 10844:23, 10844:24, 10844:28, 10844:29, 10844:30, 10844:31, 10844:32, 10844:36, 10844:37, 10844:38, 10844:39, 10844:40, 10844:44, 10844:45, 10844:46, 10844:47, 10844:48scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time baseline better,score inconsistent[catboost, scikit-learn]10844:49, 10844:57, 10844:65, 10844:73scikit-learn:1.0.1Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]10844:50, 10844:51, 10844:58, 10844:59, 10844:66, 10844:67, 10844:74, 10844:75scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]10844:52, 10844:53, 10844:54, 10844:55, 10844:56, 10844:60, 10844:61, 10844:62, 10844:63, 10844:64, 10844:68, 10844:69, 10844:70, 10844:71, 10844:72, 10844:76, 10844:77, 10844:78, 10844:79, 10844:80scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}score inconsistent[catboost, scikit-learn]10844:81scikit-learn:1.0.1Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}memory baseline better,score inconsistent[catboost, scikit-learn]10844:82, 10844:83scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.metrics.r2_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.decomposition.PCA', ' sklearn.metrics.mean_absolute_error'}memory variant better,score inconsistent[catboost, scikit-learn]10844:84, 10844:85, 10844:86, 10844:87, 10844:88scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' sklearn.pipeline.Pipeline', 'sklearn.metrics.mean_squared_error', ' nltk.wordnet.WordNetLemmatizer', ' nltk.tokenize.word_tokenize', ' sklearn.model_selection.train_test_split', ' nltk.sent_tokenize', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}memory baseline better,[nltk, scikit-learn]10857:2, 10857:3scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.pipeline.Pipeline', 'sklearn.metrics.mean_squared_error', ' nltk.wordnet.WordNetLemmatizer', ' nltk.tokenize.word_tokenize', ' sklearn.model_selection.train_test_split', ' nltk.sent_tokenize', ' sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words'}time variant better,[nltk, scikit-learn]10857:4scikit-learn:0.22.1Type B
{'sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words', ' nltk.stem.PorterStemmer', ' nltk.tokenize.word_tokenize'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]10877:2, 10877:3scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words', ' nltk.stem.PorterStemmer', ' nltk.tokenize.word_tokenize'}time baseline better,score inconsistent[nltk, scikit-learn]10877:4, 10877:5, 10877:6, 10877:7scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{'sklearn.linear_model.LinearRegression', ' nltk.corpus.stopwords.words', ' nltk.stem.PorterStemmer', ' nltk.tokenize.word_tokenize'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]10877:8scikit-learn:0.19.2Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time variant better,memory baseline better,[keras, tensorflow]11342:2, 11389:2, 11396:2tensorflow:2.4.1Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,[keras, tensorflow]11342:6, 11389:6, 11419:9tensorflow:2.2.0, tensorflow:2.3.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time variant better,score inconsistent[joblib, keras, tensorflow]11389:2, 11389:5, 11389:8, 11389:12tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.0.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time variant better,[joblib, keras, tensorflow]11389:3, 11389:6, 11389:13, 11389:14, 11396:13tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.4.1Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory baseline better,[keras, tensorflow]11389:4, 11419:12, 11419:13tensorflow:2.2.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}score inconsistent[joblib, keras, tensorflow]11389:7, 11389:9tensorflow:2.1.0, tensorflow:2.7.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time variant better,memory variant better,[joblib, keras, tensorflow]11389:11, 11396:6, 11396:7, 11396:9tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.7.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time variant better,memory baseline better,[joblib, keras, tensorflow]11389:15, 11389:16, 11389:18, 11396:11, 11396:12, 11396:15, 11396:16, 11396:17, 11396:18tensorflow:2.4.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time variant better,memory variant better,score inconsistent[joblib, keras, tensorflow]11389:17tensorflow:2.4.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,score inconsistent[joblib, keras, tensorflow]11389:29, 11389:33, 11389:34, 11389:36tensorflow:2.2.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory baseline better,score inconsistent[joblib, keras, tensorflow]11389:30, 11389:50, 11389:53tensorflow:2.2.0, tensorflow:2.4.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory baseline better,[joblib, keras, tensorflow]11389:31, 11389:49, 11389:52, 11396:30, 11396:33, 11396:34, 11396:36, 11396:47, 11396:48, 11396:49, 11396:51, 11396:52, 11396:53tensorflow:2.2.0, tensorflow:2.4.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,[joblib, keras, tensorflow]11389:32, 11389:35, 11389:47, 11396:32, 11396:35tensorflow:2.2.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory variant better,[joblib, keras, tensorflow]11389:48, 11396:5, 11396:8, 11396:29, 11396:31, 11396:50, 11396:54tensorflow:2.2.0, tensorflow:2.3.1, tensorflow:2.0.0, tensorflow:2.4.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory variant better,score inconsistent[joblib, keras, tensorflow]11389:51, 11389:54tensorflow:2.4.1Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,score inconsistent[librosa, scikit-learn, tsfresh]11390:2, 11390:9, 11390:44tsfresh:0.18.0, tsfresh:0.17.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time variant better,memory variant better,score inconsistent[librosa, scikit-learn, tsfresh]11390:3, 11390:11, 11390:12, 11390:13, 11390:26, 11390:31, 11390:34, 11390:35, 11390:38, 11390:40, 11390:41, 11390:47, 11390:54, 11390:56, 11390:61, 11390:62, 11390:66, 11390:69tsfresh:0.18.0, tsfresh:0.15.1, tsfresh:0.14.1, tsfresh:0.13.0, tsfresh:0.16.0, tsfresh:0.4.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory variant better,[librosa, scikit-learn, tsfresh]11390:4, 11390:6, 11390:18, 11390:52, 11390:59, 11390:67tsfresh:0.18.0, tsfresh:0.15.1, tsfresh:0.16.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}memory variant better,score inconsistent[librosa, scikit-learn, tsfresh]11390:5, 11390:14, 11390:21, 11390:33, 11390:46, 11390:53, 11390:68, 11390:70tsfresh:0.18.0, tsfresh:0.4.0, tsfresh:0.14.1, tsfresh:0.15.1Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory variant better,score inconsistent[librosa, scikit-learn, tsfresh]11390:7, 11390:17, 11390:28, 11390:32, 11390:39, 11390:45, 11390:49, 11390:60tsfresh:0.18.0, tsfresh:0.16.0, tsfresh:0.4.0, tsfresh:0.15.1Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time variant better,memory baseline better,[librosa, scikit-learn, tsfresh]11390:8tsfresh:0.18.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time variant better,memory variant better,[librosa, scikit-learn, tsfresh]11390:10, 11390:19, 11390:24, 11390:42, 11390:48tsfresh:0.16.0, tsfresh:0.14.1, tsfresh:0.4.0, tsfresh:0.13.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time variant better,memory baseline better,score inconsistent[librosa, scikit-learn, tsfresh]11390:15, 11390:22, 11390:50tsfresh:0.18.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}score inconsistent[librosa, scikit-learn, tsfresh]11390:16tsfresh:0.17.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}memory variant better,[librosa, scikit-learn, tsfresh]11390:20, 11390:25, 11390:27, 11390:55, 11390:63tsfresh:0.13.0, tsfresh:0.15.1, tsfresh:0.4.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time variant better,score inconsistent[librosa, scikit-learn, tsfresh]11390:23, 11390:30, 11390:51tsfresh:0.17.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory baseline better,score inconsistent[librosa, scikit-learn, tsfresh]11390:29, 11390:43tsfresh:0.18.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}memory baseline better,[librosa, scikit-learn, tsfresh]11390:36tsfresh:0.18.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,[librosa, scikit-learn, tsfresh]11390:37tsfresh:0.17.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}memory baseline better,score inconsistent[librosa, scikit-learn, tsfresh]11390:57, 11390:64tsfresh:0.18.0Type B
{' tsfresh.feature_extraction.feature_calculators.number_peaks', ' librosa.feature.mfcc', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time variant better,[librosa, scikit-learn, tsfresh]11390:58, 11390:65tsfresh:0.17.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}memory variant better,score inconsistent[joblib, keras, tensorflow]11396:2tensorflow:2.4.1Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}memory variant better,[joblib, keras, tensorflow]11396:3, 11396:4tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory baseline better,score inconsistent[keras, tensorflow]11396:4tensorflow:2.2.0Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,memory variant better,[keras, tensorflow]11396:6tensorflow:2.2.0Type B
{' keras.backend.square', ' joblib.Parallel', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' joblib.delayed', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}memory baseline better,[joblib, keras, tensorflow]11396:14tensorflow:2.4.1Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}memory baseline better,[keras, tensorflow]11419:4tensorflow:2.4.1Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}memory baseline better,score inconsistent[keras, tensorflow]11419:5tensorflow:2.4.1Type B
{' keras.backend.square', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', 'tensorflow.keras.layers.Dense', ' keras.utils.generic_utils.get_custom_objects', ' tensorflow.keras.layers.Flatten', ' keras.backend.mean', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Activation', ' keras.backend.sigmoid', ' tensorflow.keras.optimizers.Adam', ' keras.backend.sqrt', ' tensorflow.keras.Model'}time baseline better,score inconsistent[keras, tensorflow]11419:8tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}score inconsistent[keras, tensorflow]12192:2, 12274:1, 12274:2, 12274:4, 12291:2, 12291:4tensorflow:2.4.1, tensorflow:2.7.0, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}memory variant better,[keras, tensorflow]12192:3tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}memory variant better,score inconsistent[keras, tensorflow]12192:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}time baseline better,memory variant better,[keras, tensorflow]12192:6, 12274:7, 12291:6, 12291:7tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]12192:7, 12274:6tensorflow:2.1.0, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}score inconsistent[keras, tensorflow]12259:7tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.callbacks.EarlyStopping', ' keras.layers.AveragePooling2D'}memory variant better,[keras, tensorflow]12272:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.applications.imagenet_utils.preprocess_input', ' keras.preprocessing.image.load_img', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.callbacks.EarlyStopping', ' keras.layers.AveragePooling2D'}time baseline better,memory baseline better,[keras, tensorflow]12272:6, 12272:7tensorflow:2.2.0, tensorflow:2.1.0Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.corpus.stopwords.words', 'sklearn.linear_model.LogisticRegression', ' nltk.tokenize.word_tokenize'}time baseline better,[nltk, scikit-learn]15095:8scikit-learn:0.19.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.corpus.stopwords.words', 'sklearn.linear_model.LogisticRegression', ' nltk.tokenize.word_tokenize'}time variant better,memory baseline better,[nltk, scikit-learn]15095:22scikit-learn:0.21.3Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.corpus.stopwords.words', 'sklearn.linear_model.LogisticRegression', ' nltk.tokenize.word_tokenize'}time variant better,[nltk, scikit-learn]15095:23scikit-learn:0.20.3Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.corpus.stopwords.words', 'sklearn.linear_model.LogisticRegression', ' nltk.tokenize.word_tokenize'}time variant better,score inconsistent[nltk, scikit-learn]15095:30, 15095:31, 15095:32scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}memory baseline better,score inconsistent[scikit-learn, scipy]15108:8, 15108:10, 15108:17, 15108:21, 15108:22, 15108:28, 15108:29, 15108:35, 15108:36, 15108:38, 15108:42scipy:1.7.3, scipy:1.4.1, scipy:1.0.0Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time variant better,memory baseline better,score inconsistent[scikit-learn, scipy]15108:9, 15108:14, 15108:15, 15108:16, 15108:37scipy:1.5.4, scipy:1.0.0, scipy:1.7.3Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}score inconsistent[scikit-learn, scipy]15108:11, 15108:12, 15108:19, 15108:23, 15108:24, 15108:30, 15108:39, 15108:40, 15108:41, 15108:48scipy:1.3.1, scipy:1.2.1, scipy:1.5.4, scipy:1.4.1, scipy:1.1.0Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time variant better,score inconsistent[scikit-learn, scipy]15108:13, 15108:18, 15108:47scipy:1.1.0, scipy:1.3.1, scipy:1.2.1Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time variant better,memory variant better,score inconsistent[scikit-learn, scipy]15108:20, 15108:54, 15108:55scipy:1.1.0, scipy:1.2.1Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}memory variant better,score inconsistent[scikit-learn, scipy]15108:25, 15108:26, 15108:27, 15108:32, 15108:33, 15108:34scipy:1.3.1, scipy:1.2.1, scipy:1.1.0Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time baseline better,score inconsistent[scikit-learn, scipy]15108:31scipy:1.4.1Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time variant better,memory baseline better,[scikit-learn, scipy]15108:43, 15108:45, 15108:49scipy:1.7.3, scipy:1.4.1, scipy:1.0.0Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}memory baseline better,[scikit-learn, scipy]15108:44, 15108:50scipy:1.5.4, scipy:1.7.3Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time variant better,[scikit-learn, scipy]15108:46, 15108:52scipy:1.3.1, scipy:1.4.1Type B
{'scipy.sparse.csr_matrix', ' sklearn.svm.LinearSVC', ' sklearn.pipeline.Pipeline'}time variant better,memory variant better,[scikit-learn, scipy]15108:53scipy:1.3.1Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}time baseline better,memory baseline better,score inconsistent[opencv-python, torchvision]15520:2, 15520:6, 15520:10torchvision:0.9.1, torchvision:0.10.0Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}time variant better,memory baseline better,score inconsistent[opencv-python, torchvision]15520:3, 15520:4, 15520:7, 15520:8torchvision:0.8.2, torchvision:0.10.0Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}memory baseline better,score inconsistent[opencv-python, torchvision]15520:5, 15520:9torchvision:0.10.0Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}time variant better,score inconsistent[opencv-python, torchvision]15520:11, 15520:12, 15520:13, 15520:15, 15520:16, 15520:17, 15520:20torchvision:0.9.1Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}time baseline better,score inconsistent[opencv-python, torchvision]15520:14, 15520:18, 15520:19torchvision:0.9.1Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}time baseline better,memory variant better,score inconsistent[opencv-python, torchvision]15520:21, 15520:25, 15520:29torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}time variant better,memory variant better,score inconsistent[opencv-python, torchvision]15520:22, 15520:23, 15520:26, 15520:27, 15520:30torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.RandomHorizontalFlip', ' torchvision.transforms.ToTensor', 'cv2.imread', ' torchvision.transforms.Compose', ' torchvision.transforms.Pad', ' torchvision.transforms.ToPILImage', ' cv2.cvtColor', ' torchvision.transforms.Normalize'}memory variant better,score inconsistent[opencv-python, torchvision]15520:24, 15520:28torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}time variant better,memory baseline better,[scikit-learn, torch, torchvision]15525:3torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}score inconsistent[scikit-learn, torch, torchvision]15525:4, 15525:6, 15525:7, 15525:15, 15525:19torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}time variant better,score inconsistent[scikit-learn, torch, torchvision]15525:5, 15525:12torchvision:0.10.0, torchvision:0.9.1Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]15525:10torchvision:0.9.1Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}time baseline better,memory baseline better,[scikit-learn, torch, torchvision]15525:11torchvision:0.9.1Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}time baseline better,[scikit-learn, torch, torchvision]15525:13, 15525:14, 15525:18torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]15525:20torchvision:0.8.2Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.CenterCrop', ' sklearn.metrics.precision_score', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.leaky_relu', ' torchvision.transforms.Normalize', ' torch.cuda.is_available', 'sklearn.utils.class_weight.compute_sklearn.utils.class_weight', ' torch.optim.Adam', ' torchvision.transforms.Pad', ' torch.load', ' sklearn.metrics.recall_score', ' sklearn.metrics.balanced_accuracy_score', ' torch.nn.BatchNorm1d', ' torchvision.transforms.RandomHorizontalFlip', ' torch.optim.lr_scheduler.MultiplicativeLR', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.roc_auc_score', ' torch.nn.Dropout', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' sklearn.metrics.accuracy_score', ' torch.nn.functional.cross_entropy', ' torch.no_grad', ' torch.save', ' torch.nn.Sigmoid'}time baseline better,memory variant better,[scikit-learn, torch, torchvision]15525:21, 15525:22, 15525:23torchvision:0.8.2Type B
{' torch.nn.Dropout2d', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.dropout', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torchvision.models.resnet34', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torch.as_tensor', ' torch.device', ' torchvision.utils.make_grid', ' torch.optim.SGD', ' torch.nn.functional.max_pool2d', ' torch.sum', ' torch.no_grad', ' torch.save', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, torch, torchvision]15533:1, 15533:7torchvision:0.10.0, torchvision:0.8.2Type B
{' torch.nn.Dropout2d', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.dropout', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torchvision.models.resnet34', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torch.as_tensor', ' torch.device', ' torchvision.utils.make_grid', ' torch.optim.SGD', ' torch.nn.functional.max_pool2d', ' torch.sum', ' torch.no_grad', ' torch.save', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]15533:2, 15533:3, 15533:18, 15533:21, 15533:22, 15533:23, 15533:24torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.nn.Dropout2d', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.dropout', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torchvision.models.resnet34', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torch.as_tensor', ' torch.device', ' torchvision.utils.make_grid', ' torch.optim.SGD', ' torch.nn.functional.max_pool2d', ' torch.sum', ' torch.no_grad', ' torch.save', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]15533:4, 15533:5, 15533:8, 15533:9, 15533:12, 15533:13torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.nn.Dropout2d', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.dropout', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torchvision.models.resnet34', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torch.as_tensor', ' torch.device', ' torchvision.utils.make_grid', ' torch.optim.SGD', ' torch.nn.functional.max_pool2d', ' torch.sum', ' torch.no_grad', ' torch.save', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, torch, torchvision]15533:6, 15533:10, 15533:11torchvision:0.9.1Type B
{' torch.nn.Dropout2d', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.dropout', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torchvision.models.resnet34', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torch.as_tensor', ' torch.device', ' torchvision.utils.make_grid', ' torch.optim.SGD', ' torch.nn.functional.max_pool2d', ' torch.sum', ' torch.no_grad', ' torch.save', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]15533:14, 15533:15, 15533:16torchvision:0.9.1Type B
{' torch.nn.Dropout2d', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.dropout', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torchvision.models.resnet34', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torch.as_tensor', ' torch.device', ' torchvision.utils.make_grid', ' torch.optim.SGD', ' torch.nn.functional.max_pool2d', ' torch.sum', ' torch.no_grad', ' torch.save', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]15533:17, 15533:19, 15533:20torchvision:0.8.2Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]15548:9, 15548:10, 15548:11, 15548:12, 15548:13, 15548:14, 15548:15, 15548:16tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]15548:17, 15548:34, 15548:38, 15548:39tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]15548:18tensorflow:2.3.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]15548:19tensorflow:2.3.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[scikit-learn, tensorflow]15548:20, 15548:21, 15548:22, 15548:23, 15548:24tensorflow:2.3.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]15548:25, 15548:27, 15548:28, 15548:29, 15548:30, 15548:31, 15548:32, 15548:36tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]15548:26, 15548:37, 15548:40tensorflow:2.2.0, tensorflow:2.1.0Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.transforms.Normalize', ' torch.nn.Conv2d', ' torch.is_tensor', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torchvision.transforms.RandomHorizontalFlip', 'torch.nn.Relu', ' torch.utils.data.random_split', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.save'}memory baseline better,[torch, torchvision]15611:1torchvision:0.10.0Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.transforms.Normalize', ' torch.nn.Conv2d', ' torch.is_tensor', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.load', ' torch.nn.CrossEntropyLoss', ' torchvision.transforms.RandomHorizontalFlip', 'torch.nn.Relu', ' torch.utils.data.random_split', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.save'}time baseline better,[torch, torchvision]15611:2torchvision:0.9.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}time variant better,memory baseline better,[scikit-learn, tensorflow]15615:10, 15615:11, 15615:12, 15615:13, 15615:14, 15615:15, 15615:16tensorflow:2.4.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}score inconsistent[scikit-learn, tensorflow]15615:17, 15615:20, 15615:21, 15615:22, 15615:26, 15615:27, 15615:35tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]15615:18tensorflow:2.3.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}memory baseline better,score inconsistent[scikit-learn, tensorflow]15615:19tensorflow:2.3.1Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}time baseline better,score inconsistent[scikit-learn, tensorflow]15615:23, 15615:24, 15615:34tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}memory variant better,score inconsistent[scikit-learn, tensorflow]15615:25, 15615:30, 15615:31, 15615:32, 15615:37, 15615:40tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]15615:28, 15615:29, 15615:33, 15615:38, 15615:39tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.preprocessing.image.load_img', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.preprocessing.image.img_to_array', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator'}memory variant better,[scikit-learn, tensorflow]15615:36tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.models.Sequential'}memory variant better,[keras, tensorflow]15639:5tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.callbacks.ModelCheckpoint', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', ' keras.callbacks.EarlyStopping'}time baseline better,[keras, tensorflow]15676:10tensorflow:2.0.0Type B
{' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.applications.VGG16', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,[keras, tensorflow]15692:3tensorflow:2.3.1Type B
{' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.applications.VGG16', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.preprocessing.image.ImageDataGenerator'}memory variant better,[keras, tensorflow]15692:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]15693:10, 15693:11, 15693:12, 15693:14, 15693:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]15693:13, 15693:15tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]15693:18, 15693:19, 15693:50, 15693:51tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]15693:21, 15693:24, 15693:43, 15693:49, 15693:53, 15693:54tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]15693:25, 15693:26, 15693:27, 15693:28, 15693:29, 15693:30, 15693:44, 15693:46tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]15693:31, 15693:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]15693:32, 15693:41, 15693:45, 15693:47tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.layers.Input', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.Concatenate', ' keras.layers.AveragePooling2D'}memory baseline better,[keras, tensorflow]15700:10tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]15701:10tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]15701:14, 15701:15, 15701:16, 15701:57, 15701:58, 15701:62, 15701:63tensorflow:2.4.1, tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]15701:25, 15701:28, 15701:31, 15701:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,[keras, scikit-learn, tensorflow]15701:26, 15701:27, 15701:29, 15701:30, 15701:51tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]15701:41, 15701:42, 15701:44, 15701:48, 15701:49, 15701:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]15701:43, 15701:45, 15701:46, 15701:47, 15701:52, 15701:53, 15701:54, 15701:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]15701:50tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' sklearn.linear_model.LogisticRegression', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', 'sklearn.ensemble.RandomForestClassifier'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]15701:64tensorflow:2.0.0Type B
{' keras.callbacks.EarlyStopping', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', 'keras.layers.DepthwiseConv2D'}memory variant better,score inconsistent[keras, tensorflow]15703:7tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.Flatten', ' keras.preprocessing.image.load_img', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.img_to_array', 'keras.layers.Dropout', ' keras.layers.Input', ' keras.layers.MaxPooling2D', ' keras.callbacks.ReduceLROnPlateau'}score inconsistent[keras, tensorflow]15754:7tensorflow:2.1.0Type B
{' keras.layers.BatchNormalization', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.EarlyStopping', ' keras.backend.set_learning_phase', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.Add', ' keras.initializers.glorot_uniform', ' keras.layers.MaxPooling2D', ' keras.backend.set_image_data_format', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]15758:10, 15758:11tensorflow:2.4.1Type B
{' keras.layers.BatchNormalization', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.EarlyStopping', ' keras.backend.set_learning_phase', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.Add', ' keras.initializers.glorot_uniform', ' keras.layers.MaxPooling2D', ' keras.backend.set_image_data_format', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]15758:12, 15758:13, 15758:14, 15758:15, 15758:16tensorflow:2.4.1Type B
{' keras.layers.BatchNormalization', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.EarlyStopping', ' keras.backend.set_learning_phase', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.Add', ' keras.initializers.glorot_uniform', ' keras.layers.MaxPooling2D', ' keras.backend.set_image_data_format', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]15758:41, 15758:42, 15758:43tensorflow:2.2.0Type B
{' keras.layers.BatchNormalization', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.EarlyStopping', ' keras.backend.set_learning_phase', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.Flatten', ' keras.layers.Add', ' keras.initializers.glorot_uniform', ' keras.layers.MaxPooling2D', ' keras.backend.set_image_data_format', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]15758:44, 15758:45, 15758:46, 15758:47, 15758:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]15764:1, 15764:2, 15764:3, 15764:7, 15764:8tensorflow:2.7.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]15764:4, 15764:5, 15764:6tensorflow:2.7.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]15764:9, 15764:10, 15764:12tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]15764:17, 15764:20, 15764:22, 15764:24, 15764:41, 15764:46, 15764:47, 15764:52, 15764:53, 15764:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]15764:18, 15764:19, 15764:50tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]15764:21, 15764:23, 15764:42, 15764:43, 15764:44, 15764:45, 15764:48, 15764:49, 15764:54, 15764:55tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]15764:25, 15764:26, 15764:27, 15764:29, 15764:30, 15764:31tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]15764:28, 15764:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]15764:51tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.SGD', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', 'keras.models.Sequential', ' keras.callbacks.EarlyStopping'}time baseline better,memory baseline better,[keras, tensorflow]15770:8tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.LeakyReLU', 'keras.callbacks.ModelCheckpoint', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping'}memory variant better,[keras, tensorflow]15778:6tensorflow:2.2.0Type B
{' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.callbacks.TensorBoard', 'keras.callbacks.ModelCheckpoint', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping'}memory variant better,[keras, tensorflow]15781:6tensorflow:2.2.0Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.CenterCrop', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.leaky_relu', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomResizedCrop', ' torch.nn.CrossEntropyLoss', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.AvgPool2d', 'torch.set_grad_enabled', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.sum'}memory baseline better,score inconsistent[torch, torchvision]15786:1torchvision:0.10.0Type B
{' torchvision.transforms.RandomRotation', ' torchvision.transforms.CenterCrop', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.leaky_relu', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomResizedCrop', ' torch.nn.CrossEntropyLoss', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.AvgPool2d', 'torch.set_grad_enabled', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.sum'}memory variant better,score inconsistent[torch, torchvision]15786:3torchvision:0.8.2Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time variant better,score inconsistent[scikit-learn, tensorflow]15803:10, 15803:11tensorflow:2.4.1Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,[scikit-learn, tensorflow]15803:12, 15803:13, 15803:15, 15803:16tensorflow:2.4.1Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]15803:14tensorflow:2.4.1Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time baseline better,[scikit-learn, tensorflow]15803:17, 15803:22, 15803:23, 15803:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,[scikit-learn, tensorflow]15803:18, 15803:19, 15803:25, 15803:27, 15803:28, 15803:29, 15803:30, 15803:31tensorflow:2.3.1, tensorflow:2.2.0Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[scikit-learn, tensorflow]15803:20, 15803:21, 15803:24tensorflow:2.3.1Type B
{'tensorflow.io.gfile.listdir', ' tensorflow.optimizers.Adam', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.image.decode_jpeg', ' tensorflow.keras.layers.GlobalMaxPooling2D', ' sklearn.model_selection.train_test_split', ' tensorflow.math.ceil', ' tensorflow.io.read_file', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.keras.applications.MobileNetV2', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]15803:26tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.utils.normalize', ' tensorflow.keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.DepthwiseConv2D', ' keras.layers.Dropout'}memory baseline better,[keras, tensorflow]15804:10tensorflow:2.0.0Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torchvision.transforms.Resize', ' torch.nn.Linear', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torchvision.transforms.Normalize', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.CrossEntropyLoss', ' torch.nn.Sequential', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.optim.Adagrad', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]15842:1, 15842:3, 15842:6, 15842:10, 15842:11, 15842:18torchvision:0.10.0, torchvision:0.8.2, torchvision:0.9.1Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torchvision.transforms.Resize', ' torch.nn.Linear', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torchvision.transforms.Normalize', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.CrossEntropyLoss', ' torch.nn.Sequential', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.optim.Adagrad', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]15842:2, 15842:7torchvision:0.9.1, torchvision:0.10.0Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torchvision.transforms.Resize', ' torch.nn.Linear', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torchvision.transforms.Normalize', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.CrossEntropyLoss', ' torch.nn.Sequential', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.optim.Adagrad', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, torch, torchvision]15842:4, 15842:8torchvision:0.10.0Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torchvision.transforms.Resize', ' torch.nn.Linear', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torchvision.transforms.Normalize', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.CrossEntropyLoss', ' torch.nn.Sequential', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.optim.Adagrad', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, torch, torchvision]15842:5, 15842:9, 15842:14, 15842:15, 15842:19torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torchvision.transforms.Resize', ' torch.nn.Linear', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torchvision.transforms.Normalize', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.CrossEntropyLoss', ' torch.nn.Sequential', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.optim.Adagrad', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]15842:12, 15842:13, 15842:16, 15842:17torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.RandomVerticalFlip', ' torchvision.transforms.ToTensor', ' torchvision.transforms.Resize', ' torch.nn.Linear', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torchvision.transforms.Normalize', ' torch.optim.lr_scheduler.StepLR', ' torch.nn.CrossEntropyLoss', ' torch.nn.Sequential', ' torchvision.transforms.RandomHorizontalFlip', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.optim.Adagrad', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]15842:20, 15842:21, 15842:22, 15842:23, 15842:24torchvision:0.8.2Type B
{' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}time variant better,[keras, tensorflow]15860:4tensorflow:2.2.0Type B
{' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}score inconsistent[keras, tensorflow]15860:7tensorflow:2.1.0Type B
{' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', ' keras.layers.AveragePooling2D'}memory baseline better,[keras, tensorflow]15860:8tensorflow:2.0.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.keras.layers.Flatten', ' tensorflow.image.decode_jpeg', ' tensorflow.constant', ' sklearn.model_selection.train_test_split', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.io.read_file', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]15891:1, 15891:2, 15891:3, 15891:4, 15891:5, 15891:6, 15891:7, 15891:8tensorflow:2.7.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.keras.layers.Flatten', ' tensorflow.image.decode_jpeg', ' tensorflow.constant', ' sklearn.model_selection.train_test_split', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.io.read_file', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]15891:9, 15891:10, 15891:11, 15891:12, 15891:13, 15891:14, 15891:15, 15891:16tensorflow:2.4.1Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.image.resize', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.keras.layers.Flatten', ' tensorflow.image.decode_jpeg', ' tensorflow.constant', ' sklearn.model_selection.train_test_split', ' tensorflow.cast', ' tensorflow.keras.Sequential', ' tensorflow.io.read_file', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]15891:25, 15891:26, 15891:27, 15891:28, 15891:29, 15891:30, 15891:31, 15891:32, 15891:33, 15891:34, 15891:35, 15891:36, 15891:37, 15891:38, 15891:39, 15891:40tensorflow:2.2.0, tensorflow:2.1.0Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}time baseline better,score inconsistent[scikit-learn, xgboost]16282:7xgboost:0.90Type B
{' sklearn.svm.NuSVC', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.cross_validate', ' sklearn.decomposition.PCA', ' sklearn.metrics.roc_auc_score', 'bayes_opt.BayesianOptimization'}time variant better,[bayesian-optimization, scikit-learn]16412:11, 16412:14, 16412:19scikit-learn:0.23.2, scikit-learn:0.21.3Type B
{' sklearn.svm.NuSVC', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.cross_validate', ' sklearn.decomposition.PCA', ' sklearn.metrics.roc_auc_score', 'bayes_opt.BayesianOptimization'}time baseline better,score inconsistent[bayesian-optimization, scikit-learn]16412:15scikit-learn:0.20.3Type B
{' sklearn.svm.NuSVC', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.cross_validate', ' sklearn.decomposition.PCA', ' sklearn.metrics.roc_auc_score', 'bayes_opt.BayesianOptimization'}score inconsistent[bayesian-optimization, scikit-learn]16412:16, 16412:23, 16412:24scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{' sklearn.svm.NuSVC', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.cross_validate', ' sklearn.decomposition.PCA', ' sklearn.metrics.roc_auc_score', 'bayes_opt.BayesianOptimization'}time baseline better,[bayesian-optimization, scikit-learn]16412:18scikit-learn:0.24.2Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}memory variant better,[scikit-learn, tensorflow]16456:1, 16456:2, 16456:3, 16456:9, 16456:10, 16456:11tensorflow:2.7.0, tensorflow:2.4.1Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,[scikit-learn, tensorflow]16456:4, 16456:5, 16456:12, 16456:13tensorflow:2.7.0, tensorflow:2.4.1Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]16456:6, 16456:7, 16456:8, 16456:14, 16456:15, 16456:16tensorflow:2.7.0, tensorflow:2.4.1Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[scikit-learn, tensorflow]16456:25, 16456:26, 16456:27, 16456:28, 16456:29tensorflow:2.2.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]16456:30, 16456:31, 16456:32tensorflow:2.2.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,[scikit-learn, tensorflow]16456:33, 16456:34, 16456:35, 16456:36, 16456:37tensorflow:2.1.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]16456:38tensorflow:2.1.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}memory baseline better,score inconsistent[scikit-learn, tensorflow]16456:39, 16456:40tensorflow:2.1.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}memory baseline better,[scikit-learn, tensorflow]16456:41, 16456:42, 16456:43tensorflow:2.0.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,[scikit-learn, tensorflow]16456:44, 16456:45tensorflow:2.0.0Type B
{' sklearn.model_selection.StratifiedKFold', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]16456:46, 16456:47, 16456:48tensorflow:2.0.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time variant better,memory baseline better,[scikit-learn, tensorflow]16701:1, 16701:2, 16701:3tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]16701:4, 16701:5, 16701:6, 16701:7tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0, tensorflow:1.15.2Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time variant better,memory variant better,[scikit-learn, tensorflow]16701:8, 16701:40tensorflow:1.14.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}memory baseline better,[scikit-learn, tensorflow]16701:9, 16701:10, 16701:11, 16701:12, 16701:13, 16701:15tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}memory baseline better,score inconsistent[scikit-learn, tensorflow]16701:14tensorflow:2.4.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}memory variant better,score inconsistent[scikit-learn, tensorflow]16701:16, 16701:24, 16701:56, 16701:64tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}score inconsistent[scikit-learn, tensorflow]16701:18, 16701:20, 16701:23, 16701:49, 16701:50, 16701:51, 16701:52, 16701:53, 16701:54, 16701:55, 16701:57, 16701:59, 16701:60, 16701:61, 16701:62tensorflow:2.3.1, tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time variant better,score inconsistent[scikit-learn, tensorflow]16701:19, 16701:21, 16701:22, 16701:25, 16701:26, 16701:27, 16701:29, 16701:34, 16701:36, 16701:37, 16701:38, 16701:39tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time variant better,[scikit-learn, tensorflow]16701:28, 16701:30, 16701:31, 16701:33, 16701:35tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]16701:32tensorflow:2.2.0Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time baseline better,memory variant better,[scikit-learn, tensorflow]16701:65, 16701:66, 16701:69, 16701:70, 16701:71, 16701:72tensorflow:1.13.1Type B
{' tensorflow.keras.layers.Dropout', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.scale'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]16701:67, 16701:68tensorflow:1.13.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}memory variant better,[scikit-learn, xgboost]16731:2, 16731:3, 16731:8, 16731:9, 16731:10, 16731:15, 16731:16, 16731:17, 16731:22, 16731:23, 16731:24, 16731:29, 16731:30, 16731:31, 16731:45, 24426:1, 24426:8, 24426:10, 24426:16, 24426:29, 24426:30, 24426:36, 24426:50, 24426:52xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,[scikit-learn, xgboost]16731:4xgboost:1.2.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}memory baseline better,[scikit-learn, xgboost]16731:5, 16731:6, 16731:11, 16731:12, 16731:13, 16731:18, 16731:19, 16731:20, 16731:26, 16731:27, 16731:33, 16731:34, 16731:48, 24426:4, 24426:5, 24426:20, 24426:26, 24426:33, 24426:34, 24426:39, 24426:55xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]16731:7, 16731:14, 16731:21, 16731:28, 16731:35, 16731:42, 16731:49, 24426:7, 24426:14, 24426:21, 24426:28, 24426:35, 24426:42, 24426:49, 24426:56xgboost:0.90Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]16731:25, 16731:32, 16731:41, 16731:46, 16731:47, 24426:6, 24426:11, 24426:12, 24426:13, 24426:18, 24426:19, 24426:25, 24426:27, 24426:32, 24426:40, 24426:41, 24426:46, 24426:47, 24426:48, 24426:53, 24426:54xgboost:1.2.1, xgboost:1.0.2, xgboost:1.1.1Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}time variant better,memory variant better,[scikit-learn, xgboost]16731:36, 16731:37, 16731:38, 16731:43, 16731:44, 24426:2, 24426:3, 24426:9, 24426:15, 24426:17, 24426:22, 24426:23, 24426:24, 24426:31, 24426:37, 24426:38, 24426:43, 24426:44, 24426:45, 24426:51xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.metrics.mean_absolute_error', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor'}time variant better,[scikit-learn, xgboost]16731:39, 16731:40xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,[scikit-learn, tensorflow]17047:1, 17047:5, 17047:7, 17047:8tensorflow:2.7.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]17047:2, 17047:3, 17047:4tensorflow:2.7.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[scikit-learn, tensorflow]17047:6tensorflow:2.7.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}memory variant better,[scikit-learn, tensorflow]17047:9, 17047:11, 17047:16tensorflow:2.4.1Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[scikit-learn, tensorflow]17047:10, 17047:12, 17047:13, 17047:14, 17047:15tensorflow:2.4.1Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,[scikit-learn, tensorflow]17047:25tensorflow:2.2.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.models.load_model', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]17047:26, 17047:27, 17047:28, 17047:29, 17047:30, 17047:31, 17047:32tensorflow:2.2.0Type B
{' torch.manual_seed', ' torch.nn.Conv2d', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.BCELoss', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.nn.AvgPool2d', ' torch.utils.data.DataLoader', 'keras.utils.to_categorical', ' torch.nn.Softmax', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.FloatTensor'}time baseline better,memory baseline better,[keras, tensorflow, torch]17139:5, 17139:6torch:1.8.1, torch:1.7.1Type B
{' torch.manual_seed', ' torch.nn.Conv2d', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.BCELoss', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.nn.AvgPool2d', ' torch.utils.data.DataLoader', 'keras.utils.to_categorical', ' torch.nn.Softmax', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.FloatTensor'}time baseline better,[keras, tensorflow, torch]17139:7, 17139:8torch:1.9.0, torch:1.8.1Type B
{' torch.manual_seed', ' torch.nn.Conv2d', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.BCELoss', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.nn.AvgPool2d', ' torch.utils.data.DataLoader', 'keras.utils.to_categorical', ' torch.nn.Softmax', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.FloatTensor'}memory variant better,[keras, tensorflow, torch]17139:10, 17139:11, 17139:12, 17139:18torch:1.9.0, torch:1.8.1, torch:1.7.1Type B
{' torch.manual_seed', ' torch.nn.Conv2d', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.BCELoss', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.nn.AvgPool2d', ' torch.utils.data.DataLoader', 'keras.utils.to_categorical', ' torch.nn.Softmax', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.FloatTensor'}memory baseline better,[keras, tensorflow, torch]17139:13, 17139:14torch:1.9.0, torch:1.8.1Type B
{' torch.manual_seed', ' torch.nn.Conv2d', ' torch.nn.Dropout', ' torch.nn.Sequential', ' torch.nn.BCELoss', ' torch.optim.Adam', ' torch.nn.Linear', ' torch.nn.AvgPool2d', ' torch.utils.data.DataLoader', 'keras.utils.to_categorical', ' torch.nn.Softmax', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.FloatTensor'}time variant better,[keras, tensorflow, torch]17139:17torch:1.8.1Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}memory variant better,[scikit-learn, xgboost]17621:2, 17621:3, 17621:8, 17621:9, 17621:10, 17621:22, 17621:23, 17621:24, 17621:29, 17621:30, 17621:36, 17621:37, 17621:44xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}memory baseline better,[scikit-learn, xgboost]17621:4, 17621:5, 17621:6, 17621:20, 17621:27, 17621:41xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[scikit-learn, xgboost]17621:7, 17621:21, 17621:35, 17621:42xgboost:0.90Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[scikit-learn, xgboost]17621:11, 17621:18, 17621:19, 17621:25, 17621:26, 17621:32, 17621:33, 17621:34, 17621:39, 17621:40, 17621:46xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,[scikit-learn, xgboost]17621:12, 17621:13, 17621:47, 17621:48xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time baseline better,[scikit-learn, xgboost]17621:14, 17621:28, 17621:49xgboost:0.90Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time variant better,memory variant better,[scikit-learn, xgboost]17621:15, 17621:17, 17621:31, 17621:38, 17621:43, 17621:45xgboost:1.5.1, xgboost:1.3.3Type B
{' sklearn.preprocessing.LabelEncoder', 'sklearn.metrics.accuracy_score', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[scikit-learn, xgboost]17621:16xgboost:1.4.2Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', 'catboost.CatBoostClassifier', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,[catboost, tensorflow]17622:2, 17622:3, 17622:4, 17622:5, 17622:61, 17622:62, 17622:63, 17622:64, 17622:65, 17622:66tensorflow:2.7.0, tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', 'catboost.CatBoostClassifier', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[catboost, tensorflow]17622:6, 17622:7, 17622:8, 17622:9, 17622:10, 17622:11, 17622:56, 17622:57, 17622:58, 17622:59, 17622:60tensorflow:2.7.0, tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', 'catboost.CatBoostClassifier', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,[catboost, tensorflow]17622:12, 17622:13, 17622:14, 17622:15, 17622:16tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', 'catboost.CatBoostClassifier', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,score inconsistent[catboost, tensorflow]17622:17, 17622:18, 17622:19, 17622:20, 17622:21, 17622:22tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', 'catboost.CatBoostClassifier', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[catboost, tensorflow]17622:34, 17622:35, 17622:36, 17622:37, 17622:38, 17622:39, 17622:40, 17622:41, 17622:43, 17622:44, 17622:45, 17622:46, 17622:47, 17622:48, 17622:49, 17622:52, 17622:53, 17622:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', 'catboost.CatBoostClassifier', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[catboost, tensorflow]17622:42, 17622:50, 17622:51, 17622:54tensorflow:2.2.0, tensorflow:2.1.0Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,[scikit-learn, tensorflow]17625:2tensorflow:2.4.1Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,[scikit-learn, tensorflow]17625:3, 17625:4, 17625:5, 17625:6, 17625:7, 17625:8, 17625:11, 17629:4, 17629:5, 17629:7, 17629:10, 17629:11tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:2.0.0, tensorflow:1.14.0, tensorflow:2.4.1Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,[scikit-learn, tensorflow]17625:9, 17625:12, 17625:13, 17625:14, 17625:15, 17625:16, 17625:17, 17625:18, 17625:19, 17625:20, 17625:21, 17625:22, 17625:23, 17625:24, 17625:26, 17625:27, 17625:28, 17625:30, 17625:31, 17629:12, 17629:14, 17629:18, 17629:20, 17629:21, 17629:23, 17629:24, 17629:25, 17629:27, 17629:29tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,[scikit-learn, tensorflow]17625:10, 17629:2, 17629:3, 17629:6, 17629:8tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:1.15.2, tensorflow:1.14.0Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time baseline better,[scikit-learn, tensorflow]17625:32, 17629:13, 17629:19, 17629:28tensorflow:2.2.0, tensorflow:2.4.1, tensorflow:2.3.1Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[scikit-learn, tensorflow]17625:33, 17625:34, 17625:35, 17625:36, 17625:37, 17625:38, 17625:39, 17625:40, 17625:49, 17625:50, 17625:53, 17625:55, 17625:56, 17629:36, 17629:38, 17629:39tensorflow:2.1.0, tensorflow:2.0.0Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time baseline better,score inconsistent[scikit-learn, tensorflow]17625:51, 17625:52, 17625:54, 17629:34tensorflow:2.0.0, tensorflow:2.1.0Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[scikit-learn, tensorflow]17625:65, 17625:66, 17625:67, 17625:68, 17625:70, 17625:71, 17625:72, 17629:65, 17629:68, 17629:70, 17629:72tensorflow:1.13.1Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]17625:69tensorflow:1.13.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time variant better,[scikit-learn, xgboost]17628:1, 17628:2, 17628:3, 17628:4, 17628:5, 17628:6, 17628:15, 17628:17, 17628:18, 17628:29xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time variant better,score inconsistent[scikit-learn, xgboost]17628:7, 17628:21xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time baseline better,[scikit-learn, xgboost]17628:12, 17628:16xgboost:1.1.1, xgboost:1.4.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}score inconsistent[scikit-learn, xgboost]17628:14xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,[scikit-learn, xgboost]17628:24, 17628:25, 17628:26, 17628:31, 17628:32, 17628:38, 17628:39, 17628:40xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}memory variant better,[scikit-learn, xgboost]17628:27, 17628:33, 17628:34, 17628:41xgboost:1.0.2, xgboost:1.1.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]17628:28, 17628:35, 17628:42xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,[scikit-learn, xgboost]17628:45, 17628:46, 17628:47, 17628:48xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]17628:49xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,[scikit-learn, xgboost]17628:50, 17628:51, 17628:52, 17628:54, 17628:55xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,[scikit-learn, xgboost]17628:53xgboost:1.2.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.linear_model.Perceptron', ' sklearn.preprocessing.LabelEncoder', ' sklearn.datasets.load_iris', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]17628:56xgboost:0.90Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,score inconsistent[scikit-learn, tensorflow]17629:33, 17629:35, 17629:37, 17629:40, 17629:49, 17629:50, 17629:51, 17629:52, 17629:53, 17629:54, 17629:55, 17629:56tensorflow:2.1.0, tensorflow:2.0.0Type B
{'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Sequential', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]17629:66, 17629:67, 17629:69, 17629:71tensorflow:1.13.1Type B
{'sklearn.preprocessing.OrdinalEncoder', ' category_encoders.woe.WOEEncoder'}time baseline better,memory variant better,[category_encoders, scikit-learn]17638:2, 17638:3, 17638:4, 17638:5, 17638:6, 17638:7scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{'sklearn.preprocessing.OrdinalEncoder', ' category_encoders.woe.WOEEncoder'}memory baseline better,[category_encoders, scikit-learn]17638:22, 17638:23, 17638:26, 17638:27, 17638:28, 17638:29, 17638:30, 17638:33, 17638:34, 17638:35scikit-learn:0.22.1, scikit-learn:0.23.2Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}time baseline better,memory baseline better,score inconsistent[category_encoders, scikit-learn]17642:1scikit-learn:0.20.3Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}time baseline better,memory baseline better,[category_encoders, scikit-learn]17642:2, 17642:5scikit-learn:0.21.3, scikit-learn:0.23.2Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}time baseline better,[category_encoders, scikit-learn]17642:3, 17642:4scikit-learn:0.22, scikit-learn:0.22.1Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}time baseline better,memory variant better,[category_encoders, scikit-learn]17642:6, 17642:7scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}memory baseline better,score inconsistent[category_encoders, scikit-learn]17642:8, 17642:15, 17642:22, 17642:29scikit-learn:0.20.3Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}memory baseline better,[category_encoders, scikit-learn]17642:9, 17642:10, 17642:11, 17642:16, 17642:17, 17642:18, 17642:19, 17642:23, 17642:24, 17642:25, 17642:26, 17642:32, 17642:33scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.23.2Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}time variant better,memory baseline better,[category_encoders, scikit-learn]17642:12, 17642:30, 17642:31scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.22Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}time variant better,memory variant better,[category_encoders, scikit-learn]17642:13, 17642:21scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.roc_auc_score', 'sklearn.preprocessing.StandardScaler', ' sklearn.metrics.confusion_matrix', ' sklearn.neural_network.MLPClassifier'}memory variant better,[category_encoders, scikit-learn]17642:14, 17642:20, 17642:27, 17642:28, 17642:34, 17642:35scikit-learn:1.0.1, scikit-learn:0.24.2Type B
{' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.metrics.mean_absolute_error', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]17651:1, 17651:2, 17651:4, 17651:5, 17651:7, 17651:39, 17651:40, 17651:41, 17651:42, 17651:43, 17651:44, 17651:45, 17651:46, 17651:47, 17651:48, 17651:49xgboost:1.5.1, xgboost:0.90, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.4.2, xgboost:1.3.3Type B
{' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.metrics.mean_absolute_error', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[scikit-learn, xgboost]17651:2, 17651:3, 17651:4, 17651:5, 17651:6, 17651:7, 17651:9, 17651:10, 17651:11, 17651:12, 17651:13, 17651:14xgboost:1.5.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.metrics.mean_absolute_error', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[scikit-learn, xgboost]17651:3, 17651:36, 17651:37, 17651:38xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.metrics.mean_absolute_error', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]17651:6xgboost:1.0.2Type B
{' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', 'sklearn.metrics.mean_absolute_error', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]17651:8xgboost:1.5.1Type B
{'category_encoders.LeaveOneOutEncoder', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[category_encoders, xgboost]17651:8, 17651:9, 17651:22, 17651:24, 17651:26, 17651:29, 17651:33, 17651:35xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.1.1, xgboost:0.90Type B
{'category_encoders.LeaveOneOutEncoder', ' xgboost.XGBClassifier'}score inconsistent[category_encoders, xgboost]17651:10, 17651:13, 17651:18, 17651:21xgboost:1.3.3, xgboost:1.0.2, xgboost:1.2.1, xgboost:0.90Type B
{'category_encoders.LeaveOneOutEncoder', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[category_encoders, xgboost]17651:11, 17651:12, 17651:14, 17651:17, 17651:19, 17651:20xgboost:1.2.1, xgboost:1.1.1, xgboost:0.90, xgboost:1.3.3, xgboost:1.0.2Type B
{'category_encoders.LeaveOneOutEncoder', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[category_encoders, xgboost]17651:15, 17651:16, 17651:23, 17651:31, 17651:32xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1Type B
{'category_encoders.LeaveOneOutEncoder', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[category_encoders, xgboost]17651:25, 17651:27, 17651:28, 17651:30, 17651:34xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.4.2Type B
{'sklearn.metrics.roc_auc_score', ' imblearn.over_sampling.SMOTE', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.StratifiedKFold'}memory variant better,[imbalanced-learn, scikit-learn]17664:5scikit-learn:0.24.2Type B
{'sklearn.metrics.roc_auc_score', ' imblearn.over_sampling.SMOTE', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.StratifiedKFold'}time baseline better,[imbalanced-learn, scikit-learn]17664:6scikit-learn:1.0.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]17666:2, 17666:3, 17666:9, 17666:10, 17666:11, 17666:12, 17666:16, 17666:17, 17666:18, 17666:19, 17666:20, 17666:21, 17666:25, 17666:26, 17666:27, 17666:28, 17666:29, 17666:34tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:1.13.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}memory baseline better,score inconsistent[scikit-learn, tensorflow]17666:4, 17666:5, 17666:13, 17666:14, 17666:15, 17666:33, 17666:35, 17666:36, 17666:37, 17666:38tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.4.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}memory baseline better,[scikit-learn, tensorflow]17666:6, 17666:7tensorflow:1.15.2, tensorflow:2.0.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}time baseline better,memory baseline better,[scikit-learn, tensorflow]17666:8, 17666:54, 17666:55, 17666:56tensorflow:1.14.0, tensorflow:2.0.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}time variant better,memory baseline better,[scikit-learn, tensorflow]17666:22, 17666:23, 17666:24, 17666:30, 17666:31, 17666:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]17666:39, 17666:40, 17666:49, 17666:50, 17666:51, 17666:52, 17666:53tensorflow:2.1.0, tensorflow:2.0.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]17666:41, 17666:42, 17666:43, 17666:44, 17666:48, 17666:57, 17666:58, 17666:61, 17666:62, 17666:63, 17666:64, 17666:65, 17666:66, 17666:67, 17666:68, 17666:72tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}memory variant better,score inconsistent[scikit-learn, tensorflow]17666:45, 17666:46, 17666:47, 17666:59, 17666:60, 17666:71tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.concatenate', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.py_function', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]17666:69, 17666:70tensorflow:1.13.1Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]17676:1, 17676:8, 17676:15, 17676:22, 17676:29, 17676:36, 17676:50xgboost:1.5.1Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[scikit-learn, xgboost]17676:2, 17676:3, 17676:9, 17676:16, 17676:23, 17676:24, 17676:30, 17676:31, 17676:45, 17676:51xgboost:1.4.2, xgboost:1.3.3Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]17676:4, 17676:5, 17676:6, 17676:11, 17676:12, 17676:13, 17676:18, 17676:19, 17676:20, 17676:25, 17676:26, 17676:32, 17676:40, 17676:41, 17676:46, 17676:47, 17676:55xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]17676:7, 17676:14, 17676:21, 17676:28, 17676:34, 17676:35, 17676:42, 17676:48, 17676:49, 17676:56xgboost:0.90, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, xgboost]17676:10, 17676:37, 17676:38, 17676:52xgboost:1.3.3, xgboost:1.4.2Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, xgboost]17676:17, 17676:44xgboost:1.3.3, xgboost:1.4.2Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, xgboost]17676:27, 17676:33, 17676:39, 17676:53, 17676:54xgboost:1.0.2, xgboost:1.1.1, xgboost:1.2.1Type B
{' sklearn.preprocessing.LabelEncoder', ' xgboost.XGBClassifier', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, xgboost]17676:43xgboost:1.5.1Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,score inconsistent[scikit-learn, xgboost]17703:2, 17703:6, 17703:7, 17703:9, 17703:11, 17703:14, 17703:17, 17703:18, 17703:19, 17703:29, 17703:33, 17703:42xgboost:1.5.1, xgboost:0.90, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.3.3, xgboost:1.1.1Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,score inconsistent[scikit-learn, xgboost]17703:3, 17703:4, 17703:5, 17703:10, 17703:12, 17703:20, 17703:22, 17703:24, 17703:30, 17703:36, 17703:37, 17703:39, 17703:41, 17703:43, 17703:45, 17703:46xgboost:1.5.1, xgboost:1.3.3, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.4.2, xgboost:1.2.1Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[scikit-learn, xgboost]17703:8, 17703:13, 17703:15, 17703:16, 17703:21, 17703:23, 17703:25, 17703:26, 17703:31, 17703:32, 17703:38, 17703:40, 17703:44xgboost:1.5.1, xgboost:1.0.2, xgboost:1.4.2, xgboost:0.90, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.3.3Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]17703:27, 17703:48xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]17703:28, 17703:35xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory variant better,score inconsistent[scikit-learn, xgboost]17703:34, 17703:47, 17703:49xgboost:1.0.2, xgboost:1.1.1, xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]17703:50, 17703:51, 17703:52, 17703:53, 17703:54xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder'}memory baseline better,score inconsistent[scikit-learn, xgboost]17703:55, 17703:56xgboost:1.0.2, xgboost:0.90Type B
{' category_encoders.TargetEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression'}time baseline better,memory baseline better,[category_encoders, scikit-learn]17706:2, 17706:5, 17706:6, 17706:7scikit-learn:0.21.3, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' category_encoders.TargetEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression'}time baseline better,[category_encoders, scikit-learn]17706:3, 17706:4scikit-learn:0.22, scikit-learn:0.22.1Type B
{' category_encoders.TargetEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression'}memory baseline better,[category_encoders, scikit-learn]17706:23, 17706:24, 17706:25, 17706:26, 17706:27, 17706:28, 17706:30, 17706:31, 17706:32, 17706:33, 17706:34, 17706:35scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}score inconsistent[category_encoders, scikit-learn]17712:2scikit-learn:0.21.3Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}memory baseline better,[category_encoders, scikit-learn]17712:4, 17712:5, 17712:10, 17745:24, 17745:25, 17745:27, 17745:28, 17745:31, 17745:32, 17745:34, 17745:35scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:1.0.1Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time baseline better,[category_encoders, scikit-learn]17712:6, 17712:9, 17712:12, 17712:16, 17712:17, 17712:23, 17745:10, 17745:13, 17745:19scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.22Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time baseline better,score inconsistent[category_encoders, scikit-learn]17712:8, 17745:9scikit-learn:0.21.3Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time baseline better,memory baseline better,[category_encoders, scikit-learn]17712:11, 17745:26, 17745:33scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time baseline better,memory variant better,score inconsistent[category_encoders, scikit-learn]17712:14, 17712:20scikit-learn:0.21.3Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}memory variant better,[category_encoders, scikit-learn]17712:15scikit-learn:0.22.1Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time baseline better,memory variant better,[category_encoders, scikit-learn]17712:18, 17712:21, 17712:24scikit-learn:1.0.1, scikit-learn:0.22.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]17718:2, 17718:3, 17718:8, 17718:9, 17718:10, 17718:15, 17718:16, 17718:17, 17718:22, 17718:23, 17718:24, 17718:36, 17718:43, 17718:44, 24528:1, 24528:8, 24528:15, 24528:22, 24528:29, 24528:36, 24528:43, 24528:50xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]17718:4, 17718:5, 17718:11, 17718:12, 17718:18, 17718:25, 17718:26, 17718:46, 17718:54, 24528:4, 24528:5, 24528:6, 24528:11, 24528:12, 24528:13, 24528:18, 24528:19, 24528:20, 24528:25, 24528:26, 24528:32, 24528:33, 24528:39, 24528:40, 24528:46, 24528:47, 24528:53, 24528:54xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[scikit-learn, xgboost]17718:6, 17718:13, 17718:19, 17718:20, 17718:27, 17718:32, 17718:33, 17718:39, 17718:40, 17718:47, 17718:48, 17718:53, 17718:55, 24528:27, 24528:34, 24528:41, 24528:48, 24528:55xgboost:1.0.2, xgboost:1.1.1, xgboost:1.2.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]17718:7, 17718:14, 17718:21, 17718:28, 17718:34, 17718:35, 17718:41, 17718:42, 17718:49, 17718:56, 24511:7, 24511:14, 24511:21, 24511:28, 24511:35, 24511:42, 24511:49, 24511:56, 24528:7, 24528:14, 24528:21, 24528:28, 24528:35, 24528:42, 24528:49, 24528:56xgboost:0.90, xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[scikit-learn, xgboost]17718:29, 17718:30, 17718:31, 17718:37, 17718:38, 17718:45xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,score inconsistent[scikit-learn, xgboost]17718:50, 17718:52, 24528:2, 24528:3, 24528:9, 24528:10, 24528:16, 24528:17, 24528:23, 24528:24, 24528:30, 24528:31, 24528:37, 24528:38, 24528:44, 24528:45, 24528:51, 24528:52xgboost:1.5.1, xgboost:1.3.3, xgboost:1.4.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}score inconsistent[scikit-learn, xgboost]17718:51xgboost:1.4.2Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time variant better,score inconsistent[category_encoders, scikit-learn]17745:16scikit-learn:0.21.3Type B
{' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', 'sklearn.linear_model.LogisticRegression'}time baseline better,memory baseline better,score inconsistent[category_encoders, scikit-learn]17745:23, 17745:30scikit-learn:0.21.3Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]17960:18, 17960:19tensorflow:2.3.1Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]17960:20, 17960:21, 17960:22, 17960:23tensorflow:2.3.1Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]17960:24, 17960:25, 17960:29, 17960:31tensorflow:2.3.1, tensorflow:2.2.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]17960:26, 17960:27, 17960:34, 17960:35, 17960:36, 17960:39, 17960:40tensorflow:2.2.0, tensorflow:2.1.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]17960:28, 17960:30, 17960:32tensorflow:2.2.0Type B
{' sklearn.metrics.classification_report', ' tensorflow.keras.models.Sequential', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]17960:33, 17960:37, 17960:38tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn]17963:10, 17963:11, 17963:12, 17963:13scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn]17963:14, 17963:15, 17963:16scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn]17963:17, 17963:19, 17963:20, 17963:21, 17963:49, 17963:50, 17963:51, 17963:53, 17963:58, 17963:59, 17963:60scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.24.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn]17963:18, 17963:52, 17963:57, 17963:61scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.22Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn]17963:22, 17963:30, 17963:31, 17963:32, 17963:54, 17963:55, 17963:56, 17963:62, 17963:63scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn]17963:23, 17963:64scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn]17963:29scikit-learn:0.22Type B
{' tensorflow.keras.layers.BatchNormalization', 'tensorflow.keras.Sequential', ' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[keras, tensorflow]17966:7tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]17977:10, 17977:11, 17977:12, 17977:13, 17977:14, 17977:15, 17977:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]17977:17, 17977:21, 17977:22, 17977:42, 17977:54tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]17977:18, 17977:19, 17977:50tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]17977:25, 17977:27, 17977:28, 17977:29, 17977:30, 17977:32, 17977:41, 17977:44, 17977:45, 17977:46tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]17977:26, 17977:31, 17977:47, 17977:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]17977:51tensorflow:2.1.0Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time variant better,memory baseline better,[catboost, scikit-learn]17983:1, 17983:2, 17983:3, 17983:6, 17983:7, 17983:10, 17983:11, 17983:18, 17983:19, 17983:26, 17983:27, 17983:34, 17983:35, 17983:42, 17983:43, 17983:50, 17983:51scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time variant better,[catboost, scikit-learn]17983:4, 17983:5, 17983:9, 17983:14, 17983:15, 17983:17, 17983:22, 17983:23, 17983:25, 17983:30, 17983:31, 17983:38, 17983:39, 17983:41, 17983:46, 17983:49, 17983:54, 17983:55scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory variant better,[catboost, scikit-learn]17983:8, 17983:57, 17983:61, 17983:62, 17983:63, 17983:64, 17983:71, 17983:72scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,[catboost, scikit-learn]17983:12, 17983:13, 17983:16, 17983:20, 17983:21, 17983:24, 17983:28, 17983:29, 17983:32, 17983:36, 17983:37, 17983:40, 17983:44, 17983:45, 17983:48, 17983:52, 17983:53, 17983:56scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,[catboost, scikit-learn]17983:58, 17983:66, 17983:67scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory baseline better,[catboost, scikit-learn]17983:59scikit-learn:0.23.2Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,[catboost, scikit-learn]17983:60, 17983:65, 17983:68, 17983:69, 17983:70scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]17983:81, 17983:84, 17983:85, 17983:86, 17983:87scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]17983:82, 17983:83scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', 'tensorflow.random.set_seed'}memory baseline better,[keras, tensorflow]17985:5tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.Activation', 'tensorflow.random.set_seed'}time variant better,score inconsistent[keras, tensorflow]17985:6tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18007:1, 18007:2, 18007:3, 18007:4, 18007:5, 18007:6, 18007:7, 18007:8tensorflow:2.7.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]18007:9, 18007:10, 18007:11, 18007:12, 18007:13, 18007:14, 18007:15, 18007:16, 18007:33, 18007:34, 18007:35, 18007:36, 18007:37, 18007:38, 18007:39, 18007:40tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18007:25, 18007:28, 18007:31, 18007:32, 18007:51, 18007:59tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18007:26, 18007:27, 18007:29, 18007:30, 18007:49, 18007:50, 18007:52, 18007:53, 18007:54, 18007:55, 18007:56, 18007:57, 18007:58, 18007:60, 18007:61, 18007:62, 18007:63, 18007:64tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18007:65, 18007:68, 18007:72tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[scikit-learn, tensorflow]18007:66, 18007:67, 18007:70, 18007:71tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18007:69tensorflow:2.0.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}time variant better,[scikit-learn, tensorflow]18009:18, 18009:22, 18009:39tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}memory baseline better,[scikit-learn, tensorflow]18009:25, 18009:29tensorflow:2.2.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18009:26tensorflow:2.2.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}time variant better,memory baseline better,[scikit-learn, tensorflow]18009:27, 18009:28, 18009:30, 18009:31, 18009:32tensorflow:2.2.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}memory variant better,[scikit-learn, tensorflow]18009:33, 18009:35, 18009:36, 18009:37tensorflow:2.1.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}time variant better,memory variant better,[scikit-learn, tensorflow]18009:34tensorflow:2.1.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18009:41, 18009:42, 18009:43, 18009:44, 18009:45tensorflow:2.0.0Type B
{' tensorflow.keras.optimizers.Adamax', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report'}time baseline better,score inconsistent[scikit-learn, tensorflow]18009:46, 18009:47, 18009:48tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Dropout', 'tensorflow.keras.preprocessing.image.ImageDataGenerator'}memory variant better,[keras, tensorflow]18013:4tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18014:10, 18014:11, 18014:12tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18014:13tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18014:14, 18014:15, 18014:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18014:17, 18014:18, 18014:19, 18014:21, 18014:27, 18014:41, 18014:43, 18014:44, 18014:45, 18014:49, 18014:50, 18014:51tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18014:20, 18014:42, 18014:52, 18014:53tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18014:22, 18014:23, 18014:24, 18014:31, 18014:32, 18014:46, 18014:48, 18014:54, 18014:55, 18014:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18014:25, 18014:26tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18014:30, 18014:47tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18027:10, 18027:11, 18027:12, 18027:13, 18027:14, 18027:15tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18027:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18027:17, 18027:20, 18027:21, 18027:22, 18027:24, 18027:43tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18027:18, 18027:19tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18027:23, 18027:41, 18027:42tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18027:25, 18027:26, 18027:27, 18027:29, 18027:31tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18027:28, 18027:30, 18027:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.layers.Dropout', 'tensorflow.keras.preprocessing.image.ImageDataGenerator'}memory baseline better,[keras, tensorflow]18031:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18032:10, 18032:11, 18032:12, 18032:13tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18032:14, 18032:15, 18032:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18032:17, 18032:18, 18032:19, 18032:20, 18032:21, 18032:49, 18032:50, 18032:51, 18032:52, 18032:53tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18032:25, 18032:27, 18032:29, 18032:30tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18032:26, 18032:28, 18032:31, 18032:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18032:41, 18032:42, 18032:43, 18032:44, 18032:45tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.layers.AveragePooling2D', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18032:46, 18032:47, 18032:48, 18032:54tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.core.Dropout', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.core.Dense', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn]18033:10, 18033:11, 18033:12, 18033:13, 18033:14, 18033:15, 18033:16scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.core.Dropout', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.core.Dense', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn]18033:18, 18033:19, 18033:58, 18033:59scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.core.Dropout', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.core.Dense', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn]18033:25, 18033:28, 18033:29, 18033:30, 18033:32scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.core.Dropout', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.core.Dense', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn]18033:26, 18033:27, 18033:31, 18033:49, 18033:52, 18033:53, 18033:54, 18033:55, 18033:56scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18035:10, 18035:11, 18035:12, 18035:13, 18071:10, 18071:11, 18071:12, 18071:13tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18035:14, 18035:15, 18035:16, 18071:14, 18071:15, 18071:16, 18273:22, 18273:23tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18035:17, 18035:18, 18035:19, 18035:20, 18035:21, 18035:25, 18035:26, 18035:27, 18035:28, 18035:29, 18071:17, 18071:18, 18071:19, 18071:20, 18071:25, 18071:27, 18071:28, 18071:29, 18273:44tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18035:22, 18035:23, 18035:24, 18035:30, 18035:31, 18035:32, 18071:22, 18071:23, 18071:24, 18071:30, 18071:32, 18273:11, 18273:54tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.4.1, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18035:41, 18035:42, 18035:43, 18035:44, 18035:45, 18035:49, 18035:50, 18035:51, 18035:52, 18035:53, 18071:21, 18071:26, 18071:41, 18071:42, 18071:43, 18071:44, 18071:45, 18071:49, 18071:50, 18071:51, 18071:52, 18071:53, 18273:26, 18273:29tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18035:46, 18035:47, 18035:48, 18035:54, 18035:55, 18035:56, 18071:31, 18071:46, 18071:47, 18071:48, 18071:54, 18071:55, 18071:56, 18273:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18036:8, 18036:9, 18036:29, 18036:30tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]18036:10, 18036:11, 18036:12, 18036:14, 18036:31, 18036:32, 18036:33, 18036:34, 18036:35tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]18036:13, 18036:54, 18036:55tensorflow:2.4.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18036:22, 18036:23, 18036:43, 18036:44, 18036:50, 18036:51tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18036:24, 18036:25, 18036:26, 18036:27, 18036:28, 18036:45, 18036:46, 18036:47, 18036:48, 18036:49, 18036:52, 18036:53, 18036:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18036:57, 18036:58tensorflow:2.0.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18036:59, 18036:60, 18036:63tensorflow:2.0.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.EarlyStopping', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[scikit-learn, tensorflow]18036:61, 18036:62tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18040:9, 18040:10, 18040:11, 18040:14, 18040:15tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]18040:12, 18040:13, 18040:16tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[scikit-learn, tensorflow]18040:17, 18040:23, 18040:24tensorflow:2.3.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18040:18, 18040:19tensorflow:2.3.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]18040:20, 18040:21, 18040:22, 18040:26, 18040:27tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18040:25, 18040:28, 18040:30, 18040:31, 18040:32tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.applications.DenseNet121', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18040:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18045:10, 18045:11, 18045:12, 18045:13, 18045:26, 18045:28tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18045:14, 18045:15, 18045:16, 18045:31tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18045:17, 18045:18, 18045:19, 18045:20, 18045:21, 18045:25, 18045:27tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18045:22, 18045:23, 18045:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18045:24tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18045:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18045:30tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18045:41, 18045:42, 18045:43, 18045:44, 18045:45, 18045:49, 18045:50, 18045:51, 18045:52, 18045:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18045:46, 18045:47, 18045:48, 18045:54, 18045:55, 18045:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[scikit-learn, tensorflow]18051:2, 18051:3, 18051:4, 18051:5tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,score inconsistent[scikit-learn, tensorflow]18051:6, 18051:34, 18051:39, 18051:40, 18051:49, 18051:50, 18051:52tensorflow:1.15.2, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}score inconsistent[scikit-learn, tensorflow]18051:7, 18051:33, 18051:35, 18051:36, 18051:37, 18051:38, 18051:51, 18051:53, 18051:54, 18051:55, 18051:56tensorflow:2.0.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[scikit-learn, tensorflow]18051:8, 18051:19, 18051:20, 18051:24, 18051:41, 18051:42, 18051:43, 18051:44, 18051:45, 18051:46, 18051:47, 18051:48, 18051:58, 18051:59, 18051:60, 18051:61, 18051:62, 18051:63tensorflow:1.14.0, tensorflow:2.3.1, tensorflow:1.15.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18051:9, 18051:10, 18051:11, 18051:12, 18051:13, 18051:14, 18051:15, 18051:16, 18051:17, 18051:18, 18051:21, 18051:22, 18051:23tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18051:25, 18051:26, 18051:27, 18051:28, 18051:30, 18051:31, 18051:32tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18051:29tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', ' sklearn.utils.shuffle', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPool2D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18051:57, 18051:64tensorflow:1.14.0Type B
{' keras.utils.to_categorical', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Average', ' keras.engine.input_layer.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.Model'}memory baseline better,[keras, tensorflow]18054:7tensorflow:2.1.0Type B
{' keras.utils.to_categorical', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Average', ' keras.engine.input_layer.Input', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Input', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.Model'}time baseline better,[keras, tensorflow]18054:8tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.ELU', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18055:10, 18055:11, 18055:12, 18055:13, 18055:14, 18055:15, 18055:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.ELU', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18055:18, 18055:22, 18055:26, 18055:43, 18055:49, 18055:54tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.ELU', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18055:24, 18055:25, 18055:28, 18055:29, 18055:31, 18055:32, 18055:41, 18055:46, 18055:47, 18055:48, 18055:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.ELU', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18055:30, 18055:44, 18055:45tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18056:10, 18056:11tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18056:12, 18056:13tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18056:14, 18056:15, 18056:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18056:25, 18056:26, 18056:27, 18056:28, 18056:29, 18056:41, 18056:42, 18056:43, 18056:44, 18056:45, 18056:49, 18056:50, 18056:51, 18056:52, 18056:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18056:30, 18056:31, 18056:32, 18056:46, 18056:47, 18056:48, 18056:54, 18056:55, 18056:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18056:57, 18056:58, 18056:59, 18056:60, 18056:61tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18056:62, 18056:63, 18056:64tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18061:9, 18061:10, 18061:12, 18061:15tensorflow:2.0.0, tensorflow:1.15.2, tensorflow:1.13.1, tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18061:11, 18061:13, 18061:14, 18061:16tensorflow:1.14.0, tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}memory baseline better,[keras, scikit-learn, tensorflow]18061:17, 18061:18, 18061:19, 18061:21, 18061:22, 18061:23, 18061:24, 18061:27, 18061:28, 18061:29, 18061:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18061:20, 18061:25tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18061:26, 18061:30tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18061:31tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18061:41, 18061:42, 18061:43, 18061:44, 18061:45, 18061:46, 18061:47, 18061:48, 18061:49, 18061:50, 18061:51, 18061:52, 18061:53, 18061:54, 18061:55, 18061:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time variant better,[scikit-learn, tensorflow]18067:2, 18067:14, 18067:15, 18067:23tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time baseline better,[scikit-learn, tensorflow]18067:3, 18067:38tensorflow:2.7.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}score inconsistent[scikit-learn, tensorflow]18067:5, 18067:39tensorflow:2.7.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18067:6, 18067:7, 18067:8, 18067:25, 18067:27, 18067:31tensorflow:2.7.0, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}memory variant better,score inconsistent[scikit-learn, tensorflow]18067:9, 18067:50tensorflow:2.4.1, tensorflow:2.0.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time variant better,memory variant better,[scikit-learn, tensorflow]18067:10, 18067:21, 18067:33tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}memory variant better,[scikit-learn, tensorflow]18067:11, 18067:18, 18067:34, 18067:35, 18067:37tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18067:12, 18067:13, 18067:17, 18067:19, 18067:20tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time variant better,score inconsistent[scikit-learn, tensorflow]18067:16, 18067:22, 18067:24tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18067:26, 18067:28tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}memory baseline better,[scikit-learn, tensorflow]18067:29, 18067:30tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time baseline better,memory baseline better,[scikit-learn, tensorflow]18067:32tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time baseline better,memory variant better,[scikit-learn, tensorflow]18067:36tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18067:49, 18067:51, 18067:52, 18067:53tensorflow:2.0.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' sklearn.metrics.confusion_matrix'}time baseline better,score inconsistent[scikit-learn, tensorflow]18067:54, 18067:55, 18067:56tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18073:20, 18073:21, 18073:22, 18073:23, 18073:24, 18073:25, 18073:26, 18073:27, 18073:28, 18073:29, 18073:30, 18073:31, 18073:32, 18073:49, 18073:52, 18073:53, 18073:54, 18073:55, 18073:56tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18073:42, 18073:43tensorflow:2.3.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,[scikit-learn, tensorflow]18073:57, 18073:60, 18073:61, 18073:62, 18073:63, 18073:64tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[scikit-learn, tensorflow]18073:58, 18073:59tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18073:65, 18073:66, 18073:67, 18073:68, 18073:69, 18073:70, 18073:71, 18073:72tensorflow:2.0.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18074:22, 18074:23, 18074:24, 18074:30, 18074:31tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18074:25, 18074:26, 18074:27, 18074:28, 18074:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18074:46tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18074:49, 18074:50, 18074:51tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18083:44, 18083:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18083:46, 18083:47tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18083:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18083:50, 18083:51tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.layers.Activation', ' keras.layers.Dense', ' keras.models.Sequential'}score inconsistent[keras, tensorflow]18086:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.layers.Activation', ' keras.layers.Dense', ' keras.models.Sequential'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]18086:6, 18086:7tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.layers.Activation', ' keras.layers.Dense', ' keras.models.Sequential'}time baseline better,memory variant better,[keras, tensorflow]18086:8tensorflow:2.0.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18104:10, 18104:11, 18104:12, 18104:13, 18104:14, 18104:15tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18104:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18104:25, 18104:30, 18104:31, 18104:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18104:26, 18104:27, 18104:41, 18104:42, 18104:43, 18104:45, 18104:46, 18104:47tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18104:28, 18104:29, 18104:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.callbacks.TensorBoard', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18104:44tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D'}time baseline better,[keras, tensorflow]18116:8tensorflow:2.0.0Type B
{' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.functional.relu', ' torchvision.transforms.transforms.RandomRotation', 'torch.nn.AvgPool2d', ' torch.nn.Conv2d', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.transforms.ToPILImage', ' torch.nn.BatchNorm1d', ' torch.no_grad', ' torch.device', ' torch.nn.Dropout', ' torchvision.utils.make_grid', ' torch.nn.MaxPool2d', ' torch.nn.functional.cross_entropy', ' torchvision.transforms.transforms.ToTensor', ' torchvision.transforms.transforms.Compose'}memory baseline better,[torch, torchvision]18118:1torchvision:0.10.0Type B
{' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.functional.relu', ' torchvision.transforms.transforms.RandomRotation', 'torch.nn.AvgPool2d', ' torch.nn.Conv2d', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.transforms.ToPILImage', ' torch.nn.BatchNorm1d', ' torch.no_grad', ' torch.device', ' torch.nn.Dropout', ' torchvision.utils.make_grid', ' torch.nn.MaxPool2d', ' torch.nn.functional.cross_entropy', ' torchvision.transforms.transforms.ToTensor', ' torchvision.transforms.transforms.Compose'}score inconsistent[torch, torchvision]18118:2torchvision:0.9.1Type B
{' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.BatchNorm2d', ' torch.nn.functional.relu', ' torchvision.transforms.transforms.RandomRotation', 'torch.nn.AvgPool2d', ' torch.nn.Conv2d', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.transforms.ToPILImage', ' torch.nn.BatchNorm1d', ' torch.no_grad', ' torch.device', ' torch.nn.Dropout', ' torchvision.utils.make_grid', ' torch.nn.MaxPool2d', ' torch.nn.functional.cross_entropy', ' torchvision.transforms.transforms.ToTensor', ' torchvision.transforms.transforms.Compose'}memory variant better,score inconsistent[torch, torchvision]18118:3torchvision:0.8.2Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18126:18, 18126:42, 18126:43, 18126:63tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18126:20, 18126:21, 18126:22, 18126:23, 18126:24, 18126:25, 18126:26, 18126:27, 18126:28, 18126:29, 18126:30, 18126:32, 18126:49, 18126:52, 18126:53, 18126:54, 18126:55, 18126:56tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[scikit-learn, tensorflow]18126:57, 18126:58, 18126:59, 18126:62tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,[scikit-learn, tensorflow]18126:60, 18126:61, 18126:64tensorflow:2.1.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.utils.plot_model', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.test.gpu_device_name', ' tensorflow.keras.layers.Conv2D', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18126:65, 18126:66, 18126:67, 18126:68, 18126:69, 18126:70, 18126:71, 18126:72tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18130:10, 18130:11, 18130:12, 18130:13, 18130:14, 18130:15, 18130:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18130:25, 18130:26, 18130:27, 18130:28, 18130:29, 18130:30, 18130:31, 18130:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18130:41, 18130:43, 18130:44, 18130:45, 18130:46, 18130:47, 18130:48, 18130:49, 18130:50, 18130:51, 18130:52, 18130:53, 18130:54, 18130:55, 18130:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18130:42tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow], scikit-learn]18133:10, 18133:11, 18133:12, 18133:13, 18133:14, 18133:15, 18133:16, 18227:18, 18227:19, 18227:22, 18227:51, 18227:57, 18227:59, 18339:22, 18339:24, 18339:47, 18339:55tensorflow:2.4.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:1.0.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow], scikit-learn]18133:25, 18133:41, 18133:44, 18227:91, 18227:94, 18339:43, 18339:44, 18339:53tensorflow:2.2.0, scikit-learn:0.23.2, scikit-learn:0.21.3, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18133:26, 18133:27, 18133:28, 18133:29, 18133:30, 18133:31, 18133:32, 18133:48, 18251:29, 18339:11, 18339:25, 18339:28, 18339:29tensorflow:2.2.0, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18133:45, 18251:26, 18251:27, 18339:10, 18339:12, 18339:13, 18339:26, 18339:27tensorflow:2.2.0, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow], scikit-learn]18133:50, 18133:51, 18227:62, 18227:63, 18251:14, 18251:15, 18251:22, 18251:23, 18251:24, 18251:48, 18339:56tensorflow:2.1.0, scikit-learn:0.21.3, scikit-learn:0.20.3, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18142:10, 18142:11tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18142:12, 18142:13tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18142:14, 18142:15, 18142:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18142:25, 18142:26, 18142:28, 18142:29, 18142:49, 18142:50, 18142:51, 18142:52, 18142:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18142:27, 18142:41, 18142:42, 18142:43, 18142:44, 18142:45tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18142:30, 18142:31, 18142:32, 18142:54, 18142:55, 18142:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18142:46, 18142:47, 18142:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18154:10, 18154:11, 18154:12, 18154:13tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18154:14, 18154:15, 18154:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18154:25, 18154:26, 18154:27, 18154:28, 18154:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18154:30tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18154:31, 18154:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18154:41, 18154:42, 18154:43, 18154:44, 18154:45, 18154:49, 18154:50, 18154:51, 18154:52, 18154:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18154:46, 18154:47, 18154:48, 18154:54, 18154:55, 18154:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18155:1, 18155:2, 18155:3, 18155:10, 18155:11, 18155:13tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,[scikit-learn, tensorflow]18155:4, 18155:5, 18155:9, 18155:12tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.13.1, tensorflow:2.4.1Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,[scikit-learn, tensorflow]18155:6, 18155:7, 18155:16tensorflow:2.0.0, tensorflow:1.15.2, tensorflow:2.4.1Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18155:8, 18155:14, 18155:15tensorflow:1.14.0, tensorflow:2.4.1Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18155:25, 18155:28tensorflow:2.2.0Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,[scikit-learn, tensorflow]18155:26, 18155:27, 18155:29tensorflow:2.2.0Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18155:30, 18155:31, 18155:32, 18155:36, 18155:37, 18155:40tensorflow:2.2.0, tensorflow:2.1.0Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,[scikit-learn, tensorflow]18155:33, 18155:34, 18155:35, 18155:39tensorflow:2.1.0Type B
{'tensorflow.keras.layers.Dense', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[scikit-learn, tensorflow]18155:38tensorflow:2.1.0Type B
{' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]18162:1tensorflow:2.7.0Type B
{' keras.layers.GlobalAveragePooling2D', ' keras.layers.Conv2D', ' keras.layers.MaxPooling2D', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.utils.to_categorical', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout'}time baseline better,memory variant better,[keras, tensorflow]18162:4, 18162:10tensorflow:2.3.1, tensorflow:2.0.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18164:10, 18164:11, 18164:12, 18164:13, 18164:14, 18164:15, 18164:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18164:25, 18164:26, 18164:27, 18164:29, 18164:30, 18164:32, 18164:45tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18164:28, 18164:31tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18164:41tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18164:44, 18164:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18164:46tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18164:50, 18164:51tensorflow:2.1.0Type B
{' torch.nn.LogSoftmax', ' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.hub.load_state_dict_from_url', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.init.ones_', ' torch.nn.BatchNorm2d', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.sigmoid', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.init.kaiming_normal_', ' torch.nn.ZeroPad2d', ' torch.rand', ' torch.no_grad', ' torch.nn.CrossEntropyLoss', ' torch.manual_seed', ' torch.arange', ' torch.nn.Sequential', 'shap', ' torch.optim.lr_scheduler.CosineAnnealingLR', ' torch.randn', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torch.zeros_like', ' torchvision.transforms.Compose', ' torch.nn.functional.avg_pool2d', ' torch.nn.init.zeros_', ' torch.exp', ' torch.cuda.manual_seed', ' torch.sum', ' torch.cuda.manual_seed_all', ' torch.nn.init.uniform_', ' torch.nn.Sigmoid', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18168:1, 18168:2, 18168:3, 18168:6, 18168:7torchvision:0.10.0Type B
{' torch.nn.LogSoftmax', ' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.hub.load_state_dict_from_url', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.init.ones_', ' torch.nn.BatchNorm2d', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.sigmoid', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.init.kaiming_normal_', ' torch.nn.ZeroPad2d', ' torch.rand', ' torch.no_grad', ' torch.nn.CrossEntropyLoss', ' torch.manual_seed', ' torch.arange', ' torch.nn.Sequential', 'shap', ' torch.optim.lr_scheduler.CosineAnnealingLR', ' torch.randn', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torch.zeros_like', ' torchvision.transforms.Compose', ' torch.nn.functional.avg_pool2d', ' torch.nn.init.zeros_', ' torch.exp', ' torch.cuda.manual_seed', ' torch.sum', ' torch.cuda.manual_seed_all', ' torch.nn.init.uniform_', ' torch.nn.Sigmoid', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[scikit-learn, torch, torchvision]18168:4, 18168:5, 18168:8torchvision:0.10.0Type B
{' torch.nn.LogSoftmax', ' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.hub.load_state_dict_from_url', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.init.ones_', ' torch.nn.BatchNorm2d', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.sigmoid', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.init.kaiming_normal_', ' torch.nn.ZeroPad2d', ' torch.rand', ' torch.no_grad', ' torch.nn.CrossEntropyLoss', ' torch.manual_seed', ' torch.arange', ' torch.nn.Sequential', 'shap', ' torch.optim.lr_scheduler.CosineAnnealingLR', ' torch.randn', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torch.zeros_like', ' torchvision.transforms.Compose', ' torch.nn.functional.avg_pool2d', ' torch.nn.init.zeros_', ' torch.exp', ' torch.cuda.manual_seed', ' torch.sum', ' torch.cuda.manual_seed_all', ' torch.nn.init.uniform_', ' torch.nn.Sigmoid', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, torch, torchvision]18168:9, 18168:14, 18168:15, 18168:19torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.nn.LogSoftmax', ' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.hub.load_state_dict_from_url', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.init.ones_', ' torch.nn.BatchNorm2d', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.sigmoid', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.init.kaiming_normal_', ' torch.nn.ZeroPad2d', ' torch.rand', ' torch.no_grad', ' torch.nn.CrossEntropyLoss', ' torch.manual_seed', ' torch.arange', ' torch.nn.Sequential', 'shap', ' torch.optim.lr_scheduler.CosineAnnealingLR', ' torch.randn', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torch.zeros_like', ' torchvision.transforms.Compose', ' torch.nn.functional.avg_pool2d', ' torch.nn.init.zeros_', ' torch.exp', ' torch.cuda.manual_seed', ' torch.sum', ' torch.cuda.manual_seed_all', ' torch.nn.init.uniform_', ' torch.nn.Sigmoid', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18168:10, 18168:11, 18168:18torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.nn.LogSoftmax', ' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.hub.load_state_dict_from_url', ' torch.autograd.Variable', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.init.ones_', ' torch.nn.BatchNorm2d', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.sigmoid', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.init.kaiming_normal_', ' torch.nn.ZeroPad2d', ' torch.rand', ' torch.no_grad', ' torch.nn.CrossEntropyLoss', ' torch.manual_seed', ' torch.arange', ' torch.nn.Sequential', 'shap', ' torch.optim.lr_scheduler.CosineAnnealingLR', ' torch.randn', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torch.zeros_like', ' torchvision.transforms.Compose', ' torch.nn.functional.avg_pool2d', ' torch.nn.init.zeros_', ' torch.exp', ' torch.cuda.manual_seed', ' torch.sum', ' torch.cuda.manual_seed_all', ' torch.nn.init.uniform_', ' torch.nn.Sigmoid', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18168:12, 18168:13, 18168:16, 18168:17, 18168:20, 18168:21, 18168:22, 18168:23, 18168:24torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.cuda.memory_allocated', ' albumentations.Compose', ' torch.cat', ' albumentations.ShiftScaleRotate', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.cuda.empty_cache', ' torch.cuda.memory_cached', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', 'albumentations.RandomContrast', ' torch.zeros', ' torch.nn.PReLU', ' torch.nn.BatchNorm1d', ' torch.manual_seed', ' torch.nn.Sequential', ' albumentations.RandomBrightness', ' albumentations.Resize', ' sklearn.model_selection.train_test_split', ' torch.device', ' torch.nn.Dropout', ' fastai.train.DataBunch', ' torch.nn.MaxPool2d', ' torch.cuda.manual_seed', ' fastai.train.Learner', ' torch.no_grad', ' torch.nn.AdaptiveMaxPool2d'}memory baseline better,[albumentations, fastai, scikit-learn, torch]18173:10, 18173:12torch:1.7.1Type B
{' torch.cuda.memory_allocated', ' albumentations.Compose', ' torch.cat', ' albumentations.ShiftScaleRotate', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.cuda.empty_cache', ' torch.cuda.memory_cached', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', 'albumentations.RandomContrast', ' torch.zeros', ' torch.nn.PReLU', ' torch.nn.BatchNorm1d', ' torch.manual_seed', ' torch.nn.Sequential', ' albumentations.RandomBrightness', ' albumentations.Resize', ' sklearn.model_selection.train_test_split', ' torch.device', ' torch.nn.Dropout', ' fastai.train.DataBunch', ' torch.nn.MaxPool2d', ' torch.cuda.manual_seed', ' fastai.train.Learner', ' torch.no_grad', ' torch.nn.AdaptiveMaxPool2d'}memory baseline better,score inconsistent[albumentations, fastai, scikit-learn, torch]18173:11torch:1.7.1Type B
{' torch.cuda.memory_allocated', ' albumentations.Compose', ' torch.cat', ' albumentations.ShiftScaleRotate', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.cuda.empty_cache', ' torch.cuda.memory_cached', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', 'albumentations.RandomContrast', ' torch.zeros', ' torch.nn.PReLU', ' torch.nn.BatchNorm1d', ' torch.manual_seed', ' torch.nn.Sequential', ' albumentations.RandomBrightness', ' albumentations.Resize', ' sklearn.model_selection.train_test_split', ' torch.device', ' torch.nn.Dropout', ' fastai.train.DataBunch', ' torch.nn.MaxPool2d', ' torch.cuda.manual_seed', ' fastai.train.Learner', ' torch.no_grad', ' torch.nn.AdaptiveMaxPool2d'}time baseline better,[albumentations, fastai, scikit-learn, torch]18173:22torch:1.7.1Type B
{' torch.cuda.memory_allocated', ' albumentations.Compose', ' torch.cat', ' albumentations.ShiftScaleRotate', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.cuda.empty_cache', ' torch.cuda.memory_cached', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', 'albumentations.RandomContrast', ' torch.zeros', ' torch.nn.PReLU', ' torch.nn.BatchNorm1d', ' torch.manual_seed', ' torch.nn.Sequential', ' albumentations.RandomBrightness', ' albumentations.Resize', ' sklearn.model_selection.train_test_split', ' torch.device', ' torch.nn.Dropout', ' fastai.train.DataBunch', ' torch.nn.MaxPool2d', ' torch.cuda.manual_seed', ' fastai.train.Learner', ' torch.no_grad', ' torch.nn.AdaptiveMaxPool2d'}score inconsistent[albumentations, fastai, scikit-learn, torch]18173:23, 18173:36torch:1.7.1Type B
{' torch.cuda.memory_allocated', ' albumentations.Compose', ' torch.cat', ' albumentations.ShiftScaleRotate', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.cuda.empty_cache', ' torch.cuda.memory_cached', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', 'albumentations.RandomContrast', ' torch.zeros', ' torch.nn.PReLU', ' torch.nn.BatchNorm1d', ' torch.manual_seed', ' torch.nn.Sequential', ' albumentations.RandomBrightness', ' albumentations.Resize', ' sklearn.model_selection.train_test_split', ' torch.device', ' torch.nn.Dropout', ' fastai.train.DataBunch', ' torch.nn.MaxPool2d', ' torch.cuda.manual_seed', ' fastai.train.Learner', ' torch.no_grad', ' torch.nn.AdaptiveMaxPool2d'}time baseline better,score inconsistent[albumentations, fastai, scikit-learn, torch]18173:24torch:1.7.1Type B
{' torch.cuda.memory_allocated', ' albumentations.Compose', ' torch.cat', ' albumentations.ShiftScaleRotate', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.cuda.empty_cache', ' torch.cuda.memory_cached', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', 'albumentations.RandomContrast', ' torch.zeros', ' torch.nn.PReLU', ' torch.nn.BatchNorm1d', ' torch.manual_seed', ' torch.nn.Sequential', ' albumentations.RandomBrightness', ' albumentations.Resize', ' sklearn.model_selection.train_test_split', ' torch.device', ' torch.nn.Dropout', ' fastai.train.DataBunch', ' torch.nn.MaxPool2d', ' torch.cuda.manual_seed', ' fastai.train.Learner', ' torch.no_grad', ' torch.nn.AdaptiveMaxPool2d'}time variant better,[albumentations, fastai, scikit-learn, torch]18173:46, 18173:47torch:1.7.1Type B
{' keras.layers.BatchNormalization', ' keras.layers.merge.concatenate', ' keras.layers.LeakyReLU', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.callbacks.LearningRateScheduler', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.load_model', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18180:10, 18180:11, 18180:12, 18180:13tensorflow:2.4.1Type B
{' keras.layers.BatchNormalization', ' keras.layers.merge.concatenate', ' keras.layers.LeakyReLU', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.callbacks.LearningRateScheduler', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.load_model', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18180:14, 18180:15, 18180:16tensorflow:2.4.1Type B
{' keras.layers.BatchNormalization', ' keras.layers.merge.concatenate', ' keras.layers.LeakyReLU', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.callbacks.LearningRateScheduler', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.load_model', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18180:25, 18180:26, 18180:27, 18180:28, 18180:29tensorflow:2.2.0Type B
{' keras.layers.BatchNormalization', ' keras.layers.merge.concatenate', ' keras.layers.LeakyReLU', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.callbacks.LearningRateScheduler', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.load_model', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18180:30, 18180:31, 18180:32tensorflow:2.2.0Type B
{' keras.layers.BatchNormalization', ' keras.layers.merge.concatenate', ' keras.layers.LeakyReLU', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.callbacks.LearningRateScheduler', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.load_model', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18180:41, 18180:42, 18180:43, 18180:44, 18180:45tensorflow:2.2.0Type B
{' keras.layers.BatchNormalization', ' keras.layers.merge.concatenate', ' keras.layers.LeakyReLU', ' keras.layers.Activation', ' keras.callbacks.ModelCheckpoint', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.callbacks.LearningRateScheduler', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.load_model', ' keras.optimizers.RMSprop', ' keras.layers.Input', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18180:46, 18180:47, 18180:48tensorflow:2.2.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18181:9, 18181:10, 18181:11, 18181:12, 18181:13tensorflow:2.0.0, tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18181:14, 18181:15tensorflow:2.4.1Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18181:16tensorflow:2.4.1Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18181:25, 18181:27, 18181:29, 18181:41, 18181:42, 18181:44tensorflow:2.2.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18181:26tensorflow:2.2.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18181:28, 18181:43, 18181:45, 18181:49, 18181:50, 18181:51, 18181:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18181:30, 18181:31, 18181:32, 18181:46, 18181:47, 18181:48, 18181:54, 18181:55, 18181:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.LearningRateScheduler', ' keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' keras.regularizers.l2', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[keras, scikit-learn, tensorflow]18181:52tensorflow:2.1.0Type B
{' torchvision.transforms.RandomRotation', ' torch.nn.LogSoftmax', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.argmax', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torchvision.transforms.RandomResizedCrop', ' torch.tensor', ' torch.manual_seed', ' torch.nn.Sequential', 'torch.nn.Relu', ' torch.utils.data.random_split', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.cuda.manual_seed', ' torch.sum', ' torch.nn.NLLLoss'}time variant better,memory baseline better,[torch, torchvision]18184:1torchvision:0.10.0Type B
{' torchvision.transforms.RandomRotation', ' torch.nn.LogSoftmax', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.argmax', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.cuda.is_available', ' torch.nn.AdaptiveAvgPool2d', ' torch.optim.Adam', ' torchvision.transforms.RandomResizedCrop', ' torch.tensor', ' torch.manual_seed', ' torch.nn.Sequential', 'torch.nn.Relu', ' torch.utils.data.random_split', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.cuda.manual_seed', ' torch.sum', ' torch.nn.NLLLoss'}time baseline better,memory variant better,score inconsistent[torch, torchvision]18184:3torchvision:0.8.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.callbacks.EarlyStopping'}time variant better,score inconsistent[keras, tensorflow]18190:8tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D'}memory variant better,[keras, tensorflow]18191:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D'}time variant better,score inconsistent[keras, tensorflow]18191:8tensorflow:2.0.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[scikit-learn, tensorflow]18200:9tensorflow:1.13.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}score inconsistent[scikit-learn, tensorflow]18200:12, 18200:13, 18200:18tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}memory baseline better,[scikit-learn, tensorflow]18200:14, 18200:24, 18200:30, 18200:31tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18200:15, 18200:16, 18200:22, 18200:23, 18200:32tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18200:17tensorflow:2.3.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[scikit-learn, tensorflow]18200:20, 18200:25, 18200:27, 18200:28, 18200:29tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.callbacks.ModelCheckpoint', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.models.Sequential', ' tensorflow.argmax', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D', ' tensorflow.keras.layers.Conv2D', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' sklearn.metrics.confusion_matrix', ' sklearn.metrics.classification_report', ' sklearn.metrics.accuracy_score', 'tensorflow.keras.optimizers.Adam'}memory variant better,[scikit-learn, tensorflow]18200:21, 18200:26tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]18202:1tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18202:6, 18202:7, 18202:8, 18202:39, 18202:40, 18202:70, 18202:71tensorflow:2.0.0, tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:2.1.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,[scikit-learn, tensorflow]18202:9, 18202:10tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18202:12, 18202:26, 18202:34, 18202:36, 18202:65, 18202:67tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[scikit-learn, tensorflow]18202:13, 18202:17, 18202:18, 18202:19, 18202:20, 18202:21, 18202:25, 18202:27, 18202:28, 18202:29, 18202:33, 18202:35, 18202:37tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[scikit-learn, tensorflow]18202:14, 18202:15, 18202:16, 18202:22, 18202:23, 18202:24, 18202:30, 18202:31, 18202:32, 18202:38tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[scikit-learn, tensorflow]18202:49, 18202:50, 18202:51, 18202:52, 18202:53, 18202:57, 18202:58, 18202:59, 18202:60, 18202:61, 18202:69tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[scikit-learn, tensorflow]18202:54, 18202:55, 18202:56, 18202:62, 18202:63, 18202:64tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18202:66, 18202:68tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18202:72tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[scikit-learn, tensorflow]18204:1, 18204:3, 18204:5tensorflow:2.7.0, tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[scikit-learn, tensorflow]18204:2, 18204:4tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18204:6, 18204:7, 18204:8, 18204:56, 18204:62, 18204:63, 18204:64tensorflow:2.0.0, tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]18204:9, 18204:10, 18204:11tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18204:12, 18204:13, 18204:27, 18204:34, 18204:35, 18204:36, 18204:52tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18204:14, 18204:15, 18204:16, 18204:30, 18204:39, 18204:54, 18204:55tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18204:17, 18204:18, 18204:19, 18204:20, 18204:21, 18204:65, 18204:66, 18204:67, 18204:68tensorflow:2.3.1, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18204:22, 18204:23, 18204:24, 18204:31, 18204:32, 18204:70, 18204:71, 18204:72tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[scikit-learn, tensorflow]18204:25, 18204:26, 18204:29, 18204:69tensorflow:2.2.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18204:28, 18204:33, 18204:37, 18204:49tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18204:38, 18204:40tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18204:50, 18204:53, 18204:58, 18204:59, 18204:60, 18204:61tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[scikit-learn, tensorflow]18204:51, 18204:57tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18206:9, 18206:10, 18206:33, 18206:35, 18206:37, 18206:38, 18206:39tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.1.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18206:11, 18206:14, 18206:34, 18206:36, 18206:40tensorflow:2.4.1, tensorflow:2.1.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]18206:17, 18206:20, 18206:21tensorflow:2.3.1Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,[scikit-learn, tensorflow]18206:18, 18206:19, 18206:22, 18206:23, 18206:24tensorflow:2.3.1Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]18206:25, 18206:29, 18206:32tensorflow:2.2.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18206:49, 18206:51, 18206:53, 18206:54, 18206:57, 18206:59, 18206:60, 18206:61tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18206:50, 18206:55, 18206:63tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[scikit-learn, tensorflow]18206:52, 18206:56, 18206:62, 18206:64tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.backend.set_value', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18206:58tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[keras, scikit-learn, tensorflow]18207:50tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[keras, scikit-learn, tensorflow]18207:54, 18207:55, 18207:56tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.backend.set_value', ' keras.backend.get_value', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.GlobalAveragePooling2D', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[keras, tensorflow]18208:1tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', ' keras.backend.set_value', ' keras.backend.get_value', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.GlobalAveragePooling2D', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[keras, tensorflow]18208:2, 18208:4, 18208:7tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.backend.set_value', ' keras.backend.get_value', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.GlobalAveragePooling2D', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]18208:3, 18208:5, 18208:6tensorflow:2.3.1, tensorflow:2.2.0Type B
{' torch.nn.MaxPool2d', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.optim.Adam', ' torch.utils.data.DataLoader', ' torch.nn.functional.dropout', ' torch.nn.LeakyReLU', ' torch.log', 'sklearn.model_selection.train_test_split', ' torch.optim.lr_scheduler.ReduceLROnPlateau', ' torch.no_grad', ' torch.save', ' torch.nn.Dropout', ' torch.nn.functional.leaky_relu'}memory variant better,score inconsistent[scikit-learn, torch]18210:1, 18210:2, 18210:3, 18210:4, 18210:5, 18210:20torch:1.9.0, torch:1.8.1, torch:1.7.1Type B
{' torch.nn.MaxPool2d', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.optim.Adam', ' torch.utils.data.DataLoader', ' torch.nn.functional.dropout', ' torch.nn.LeakyReLU', ' torch.log', 'sklearn.model_selection.train_test_split', ' torch.optim.lr_scheduler.ReduceLROnPlateau', ' torch.no_grad', ' torch.save', ' torch.nn.Dropout', ' torch.nn.functional.leaky_relu'}memory baseline better,score inconsistent[scikit-learn, torch]18210:6, 18210:7, 18210:8torch:1.9.0Type B
{' torch.nn.MaxPool2d', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.optim.Adam', ' torch.utils.data.DataLoader', ' torch.nn.functional.dropout', ' torch.nn.LeakyReLU', ' torch.log', 'sklearn.model_selection.train_test_split', ' torch.optim.lr_scheduler.ReduceLROnPlateau', ' torch.no_grad', ' torch.save', ' torch.nn.Dropout', ' torch.nn.functional.leaky_relu'}time baseline better,memory variant better,score inconsistent[scikit-learn, torch]18210:9, 18210:10, 18210:11, 18210:12, 18210:13, 18210:17, 18210:18, 18210:19torch:1.8.1, torch:1.7.1Type B
{' torch.nn.MaxPool2d', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.optim.Adam', ' torch.utils.data.DataLoader', ' torch.nn.functional.dropout', ' torch.nn.LeakyReLU', ' torch.log', 'sklearn.model_selection.train_test_split', ' torch.optim.lr_scheduler.ReduceLROnPlateau', ' torch.no_grad', ' torch.save', ' torch.nn.Dropout', ' torch.nn.functional.leaky_relu'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch]18210:14, 18210:15, 18210:16torch:1.8.1Type B
{' torch.nn.MaxPool2d', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.optim.Adam', ' torch.utils.data.DataLoader', ' torch.nn.functional.dropout', ' torch.nn.LeakyReLU', ' torch.log', 'sklearn.model_selection.train_test_split', ' torch.optim.lr_scheduler.ReduceLROnPlateau', ' torch.no_grad', ' torch.save', ' torch.nn.Dropout', ' torch.nn.functional.leaky_relu'}time variant better,memory variant better,score inconsistent[scikit-learn, torch]18210:21torch:1.7.1Type B
{' torch.nn.MaxPool2d', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.nn.Sequential', ' torch.nn.Linear', ' torch.optim.Adam', ' torch.utils.data.DataLoader', ' torch.nn.functional.dropout', ' torch.nn.LeakyReLU', ' torch.log', 'sklearn.model_selection.train_test_split', ' torch.optim.lr_scheduler.ReduceLROnPlateau', ' torch.no_grad', ' torch.save', ' torch.nn.Dropout', ' torch.nn.functional.leaky_relu'}time variant better,memory baseline better,score inconsistent[scikit-learn, torch]18210:22, 18210:23, 18210:24torch:1.7.1Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, torch, torchvision]18212:1, 18212:6, 18212:11torchvision:0.10.0, torchvision:0.9.1Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18212:2torchvision:0.9.1Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[scikit-learn, torch, torchvision]18212:3, 18212:10torchvision:0.8.2, torchvision:0.9.1Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[scikit-learn, torch, torchvision]18212:4torchvision:0.10.0Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, torch, torchvision]18212:5, 18212:7, 18212:8, 18212:18, 18212:19torchvision:0.10.0, torchvision:0.8.2Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]18212:12, 18212:15, 18212:16, 18212:17, 18212:20, 18212:22torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[scikit-learn, torch, torchvision]18212:13torchvision:0.9.1Type B
{' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torchvision.transforms.ToTensor', ' torch.cuda.is_available', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.optim.Adam', ' torchvision.transforms.Compose', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.ToPILImage', ' torch.cuda.set_device', ' torch.no_grad', ' torch.cuda.current_device', ' torch.nn.CrossEntropyLoss', 'sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, torch, torchvision]18212:21, 18212:23, 18212:24torchvision:0.8.2Type B
{'tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.Sequential', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time baseline better,score inconsistent[keras, tensorflow]18214:1tensorflow:2.7.0Type B
{'tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.Sequential', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}memory variant better,[keras, tensorflow]18214:2tensorflow:2.4.1Type B
{'tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.Sequential', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time variant better,memory variant better,score inconsistent[keras, tensorflow]18214:3, 18214:4tensorflow:2.3.1, tensorflow:2.2.0Type B
{'tensorflow.keras.callbacks.LearningRateScheduler', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.Sequential', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time baseline better,memory variant better,[keras, tensorflow]18214:6tensorflow:2.2.0Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18218:10, 18218:11, 18218:12, 18218:13, 18218:14, 18218:15tensorflow:2.4.1Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18218:17, 18218:18, 18218:23, 18218:41, 18218:42, 18218:43, 18218:44, 18218:45, 18218:46, 18218:49, 18218:50, 18218:51, 18218:52, 18218:53, 18218:55tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18218:19, 18218:20, 18218:21, 18218:22tensorflow:2.3.1Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18218:25, 18218:27, 18218:28, 18218:29, 18218:30, 18218:31tensorflow:2.2.0Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18218:26tensorflow:2.2.0Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.LeakyReLU', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}score inconsistent[keras, scikit-learn, tensorflow]18218:47, 18218:54tensorflow:2.2.0, tensorflow:2.1.0Type B
{' sklearn.preprocessing.MinMaxScaler', 'tensorflow.keras.optimizers.SGD', ' keras.models.Model', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time variant better,[keras, scikit-learn, tensorflow]18220:43, 18220:46, 18220:57, 18220:61, 18220:76tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', 'tensorflow.keras.optimizers.SGD', ' keras.models.Model', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time baseline better,[keras, scikit-learn, tensorflow]18220:44, 18220:47, 18220:59, 18220:75, 18220:77, 18220:78tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.MinMaxScaler', 'tensorflow.keras.optimizers.SGD', ' keras.models.Model', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18220:48tensorflow:2.2.0Type B
{' sklearn.preprocessing.MinMaxScaler', 'tensorflow.keras.optimizers.SGD', ' keras.models.Model', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}memory baseline better,[keras, scikit-learn, tensorflow]18220:64tensorflow:2.1.0Type B
{' sklearn.preprocessing.MinMaxScaler', 'tensorflow.keras.optimizers.SGD', ' keras.models.Model', ' keras.callbacks.CSVLogger', ' keras.callbacks.ModelCheckpoint'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18220:80tensorflow:2.0.0Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18223:10, 18223:11, 18223:12, 18223:13, 18223:14, 18223:15tensorflow:2.4.1Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18223:17, 18223:18, 18223:19tensorflow:2.3.1Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}score inconsistent[keras, scikit-learn, tensorflow]18223:20tensorflow:2.3.1Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18223:21, 18223:22, 18223:23, 18223:41, 18223:42, 18223:43, 18223:44, 18223:45, 18223:46, 18223:47, 18223:49, 18223:50, 18223:51, 18223:52, 18223:53, 18223:54, 18223:55tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.core.Dropout', ' keras.layers.normalization.BatchNormalization', ' keras.layers.core.Flatten', ' keras.layers.convolutional.Conv2D', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.core.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.regularizers.l2', 'sklearn.preprocessing.OneHotEncoder', ' keras.layers.convolutional.MaxPooling2D'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18223:25, 18223:26, 18223:27, 18223:28, 18223:29, 18223:30, 18223:31tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn], scikit-learn, tensorflow]18227:10, 18227:11, 18227:12, 18227:13, 18227:15, 18251:30, 18339:14, 18339:15, 18339:16, 18339:30, 18339:31scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, tensorflow:2.2.0, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn], scikit-learn, tensorflow]18227:14, 18227:16, 18339:32scikit-learn:0.21.3, scikit-learn:0.19.2, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn], scikit-learn, tensorflow]18227:17, 18227:23, 18227:50, 18227:58, 18251:47, 18251:54, 18251:55, 18251:56, 18339:23, 18339:54scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.24.2, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn]18227:20, 18227:21, 18227:52, 18227:53, 18227:60scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn], scikit-learn, tensorflow]18227:24, 18227:49, 18227:54, 18227:55, 18227:56, 18227:61, 18227:76, 18227:78, 18227:79, 18227:80, 18227:81, 18227:86, 18251:50scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.22, scikit-learn:0.22.1, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn]18227:25, 18227:27, 18227:29, 18227:30scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn], scikit-learn, tensorflow]18227:26, 18227:28, 18227:31, 18227:32, 18251:11scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.19.2, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn], scikit-learn, tensorflow]18227:64, 18227:73, 18227:77, 18227:82, 18227:83, 18227:87, 18251:10scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.20.3, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn], scikit-learn, tensorflow]18227:74, 18227:75, 18251:16, 18251:31, 18251:32, 18251:46, 18339:46, 18339:48scikit-learn:0.24.2, scikit-learn:0.23.2, tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn], scikit-learn, tensorflow]18227:84, 18227:89, 18227:90, 18227:95, 18251:41, 18251:51, 18339:19, 18339:41, 18339:49, 18339:50, 18339:51scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.20.3, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn], scikit-learn, tensorflow]18227:85, 18227:88, 18227:92, 18227:93, 18227:96, 18251:43, 18251:44, 18251:52, 18251:53, 18339:17, 18339:18, 18339:20, 18339:21, 18339:42scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.22.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.EarlyStopping', ' keras.layers.convolutional.MaxPooling2D'}time variant better,score inconsistent[keras, tensorflow]18229:8tensorflow:2.0.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.backend.mean', 'keras.backend.function', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.Adadelta', ' keras.layers.Dropout', ' keras.backend.gradients'}memory variant better,[keras, tensorflow]18231:4tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18232:1, 18232:4, 18232:9, 18232:13, 18232:27tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}score inconsistent[keras, scikit-learn, tensorflow]18232:2tensorflow:2.7.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}memory variant better,[keras, scikit-learn, tensorflow]18232:5, 18232:10, 18232:11tensorflow:2.7.0, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}memory baseline better,[keras, scikit-learn, tensorflow]18232:6tensorflow:2.7.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18232:7, 18232:8, 18232:14, 18232:15tensorflow:2.7.0, tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18232:12, 18232:18, 18232:20, 18232:28, 18232:29, 18232:41, 18232:42, 18232:43tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18232:16, 18232:22, 18232:23, 18232:24, 18232:31, 18232:32tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18232:17, 18232:21tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18232:19tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18232:25, 18232:26, 18232:44, 18232:50, 18232:51, 18232:52, 18232:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18232:30tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18232:45, 18232:49tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18232:46, 18232:54, 18232:55, 18232:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18232:47tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator'}time baseline better,[keras, scikit-learn, tensorflow]18232:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Dropout', 'tensorflow.keras.preprocessing.image.ImageDataGenerator'}score inconsistent[keras, tensorflow]18233:6tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn]18235:10, 18235:11, 18235:14, 18235:15, 18235:16, 18235:30, 18235:31scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn]18235:12, 18235:13, 18235:26, 18235:32, 18235:73scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.24.2, scikit-learn:0.19.2, scikit-learn:1.0.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn]18235:17, 18235:18, 18235:19, 18235:21, 18235:74, 18235:82, 18235:88scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn]18235:20, 18235:75scikit-learn:0.22.1, scikit-learn:0.23.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn]18235:22, 18235:79, 18235:87scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn]18235:23, 18235:24, 18235:64, 18235:78, 18235:80scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.21.3Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn]18235:25, 18235:27, 18235:28scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn]18235:29scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn]18235:49, 18235:50, 18235:51, 18235:57, 18235:58, 18235:59, 18235:61, 18235:83scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn]18235:52, 18235:53, 18235:92scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn]18235:54, 18235:55, 18235:56, 18235:63scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn]18235:62, 18235:86scikit-learn:0.21.3Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn]18235:76, 18235:85, 18235:89, 18235:90, 18235:93, 18235:94, 18235:95scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn]18235:77, 18235:96scikit-learn:0.22, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn]18235:81, 18235:84, 18235:91scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.23.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn]18239:9, 18239:11, 18239:12, 18239:13, 18239:17, 18239:19, 18239:21, 18239:25, 18239:26, 18239:28, 18244:9, 18244:10, 18244:11, 18244:18, 18244:19scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.22.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn]18239:10, 18239:18, 18239:20, 18244:12, 18244:13scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn]18239:14, 18239:15, 18239:16, 18239:22, 18239:23, 18239:24, 18239:27, 18239:29, 18239:30, 18239:31, 18239:32, 18244:14, 18244:22, 18244:23, 18244:24, 18244:30, 18244:31, 18244:32scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.23.2, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn]18239:49, 18239:52, 18239:57, 18239:58, 18239:59, 18239:60, 18239:61, 18244:51, 18244:52, 18244:53, 18244:57, 18244:60, 18244:73, 18244:76, 18244:81, 18244:82, 18244:83, 18244:89, 18244:92, 18244:93scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn]18239:50, 18239:51, 18239:53, 18244:49, 18244:61, 18244:84, 18244:85, 18244:90, 18244:91scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.22.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn]18239:54, 18239:55, 18244:54, 18244:55, 18244:56, 18244:63, 18244:64, 18244:79, 18244:86, 18244:87, 18244:88scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn]18239:56, 18239:87scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn]18239:62, 18239:63, 18239:64, 18244:62, 18244:78, 18244:80scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn]18239:73, 18239:74, 18239:75, 18239:77, 18239:81, 18239:82, 18239:83, 18239:84, 18239:89, 18239:90, 18239:91, 18239:92, 18239:93, 18244:77scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn]18239:76, 18239:85scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn]18239:78, 18239:79, 18239:80, 18239:86, 18239:88, 18239:94, 18239:95, 18239:96scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn]18244:15, 18244:16scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn]18244:17, 18244:25scikit-learn:1.0.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn]18244:20, 18244:21, 18244:26, 18244:27, 18244:28, 18244:29scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn]18244:50, 18244:58, 18244:94, 18244:96scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn]18244:59, 18244:74, 18244:75, 18244:95scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.20.3Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18246:10, 18246:11tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18246:12, 18246:13, 18246:18, 18246:19tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18246:14, 18246:16, 18246:22, 18246:24tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18246:15tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18246:17, 18246:20, 18246:21tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18246:23tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18246:25, 18246:27, 18246:28, 18246:49, 18246:50tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18246:26, 18246:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18246:30, 18246:31, 18246:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18246:41, 18246:43, 18246:51, 18246:52, 18246:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18246:42, 18246:44, 18246:45tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18246:46, 18246:47, 18246:54, 18246:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Bidirectional', ' keras.layers.TimeDistributed', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.layers.GRU', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18246:48, 18246:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18248:10tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,[keras, scikit-learn, tensorflow]18248:11, 18248:12, 18248:13tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18248:14, 18248:15, 18248:30, 18248:31, 18248:32tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18248:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18248:17, 18248:18, 18248:20, 18248:26, 18248:27, 18248:43tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}memory variant better,[keras, scikit-learn, tensorflow]18248:19, 18248:21, 18248:42tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18248:22, 18248:23, 18248:47, 18248:54, 18248:55, 18248:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18248:24, 18248:46, 18248:48tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18248:25, 18248:44, 18248:45, 18248:50, 18248:51, 18248:52tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18248:28, 18248:29, 18248:41tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18248:49, 18248:53tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.advanced_activations.LeakyReLU'}time baseline better,memory variant better,[keras, tensorflow]18249:3tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.advanced_activations.LeakyReLU'}time variant better,memory variant better,[keras, tensorflow]18249:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18249:9, 18249:11, 18249:12, 18249:13, 18249:27, 18249:28tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18249:10tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18249:14, 18249:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18249:15, 18249:31tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18249:17, 18249:20tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18249:18, 18249:19, 18249:25tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18249:21, 18249:29tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18249:22tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18249:23, 18249:24, 18249:30, 18249:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18249:26tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.advanced_activations.LeakyReLU'}time variant better,memory variant better,score inconsistent[keras, tensorflow]18250:3tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.layers.advanced_activations.LeakyReLU'}time variant better,memory variant better,[keras, tensorflow]18250:4tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18250:9, 18250:11, 18250:12, 18250:25tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18250:10tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18250:13, 18250:17, 18250:19, 18250:21, 18250:26, 18250:28tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18250:14tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18250:15, 18250:32tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18250:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18250:18, 18250:27tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18250:20, 18250:29tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18250:22, 18250:24tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18250:23, 18250:31tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.advanced_activations.LeakyReLU', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18250:30tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18251:17, 18251:18, 18251:19, 18251:20, 18251:21, 18251:25, 18251:28, 18251:42, 18251:45, 18251:49, 18339:45, 18339:52tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18252:10, 18252:13, 18252:15, 18252:19tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18252:11, 18252:14, 18252:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18252:12tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18252:17, 18252:20, 18252:22, 18252:27, 18252:50tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18252:18tensorflow:2.3.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18252:23, 18252:26, 18252:42, 18252:52tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18252:24, 18252:43, 18252:49, 18252:51, 18252:53tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18252:25, 18252:30, 18252:32, 18252:41, 18252:45tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18252:28tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18252:29, 18252:46, 18252:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18252:31tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18252:44tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.Sequential', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18252:47, 18252:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18253:10, 18253:17, 18253:26tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18253:11, 18253:25, 18253:27, 18253:28, 18253:43, 18253:45, 18253:49, 18253:50, 18253:51, 18253:53tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18253:12, 18253:13, 18253:19, 18253:20, 18253:21, 18253:29, 18253:44tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18253:14, 18253:22, 18253:48, 18253:56tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18253:15tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18253:16, 18253:30tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18253:18, 18253:41tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18253:23, 18253:47, 18253:54tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18253:24, 18253:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18253:31, 18253:46, 18253:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18253:42tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18253:52tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn]18257:10, 18257:11, 18257:31scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.20.3Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn]18257:12, 18257:13, 18257:27scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.23.2Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn]18257:14, 18257:15, 18257:16, 18257:30, 18257:32scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn]18257:17, 18257:18, 18257:21scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn]18257:22, 18257:23, 18257:24, 18257:56scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn]18257:25, 18257:28, 18257:29scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn]18257:26scikit-learn:0.24.2Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn]18257:50, 18257:51, 18257:57, 18257:59, 18257:60, 18257:74, 18257:75, 18257:82scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1, scikit-learn:0.22.1Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn]18257:52, 18257:81, 18257:85, 18257:96scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn]18257:53, 18257:83, 18257:92, 18257:95scikit-learn:0.22, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.20.3Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn]18257:54, 18257:55, 18257:62, 18257:63, 18257:79, 18257:80, 18257:86scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn]18257:58, 18257:61scikit-learn:0.24.2, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn]18257:64, 18257:78, 18257:87scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn]18257:76, 18257:77scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn]18257:84, 18257:89, 18257:90, 18257:91, 18257:93, 18257:94scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.21.3Type B
{' keras.layers.Conv2D', ' keras.models.Model', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.PReLU', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn]18257:88scikit-learn:0.19.2Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[keras, tensorflow]18258:3tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]18258:4tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[keras, tensorflow]18258:7tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18258:9, 18258:29tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18258:10, 18258:11, 18258:30tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[keras, scikit-learn, tensorflow]18258:12, 18258:25tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18258:13, 18258:19, 18258:26, 18258:28tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18258:14tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[keras, scikit-learn, tensorflow]18258:15, 18258:16tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18258:17, 18258:18tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18258:20, 18258:27tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18258:21tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[keras, scikit-learn, tensorflow]18258:22, 18258:23, 18258:31tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,[keras, scikit-learn, tensorflow]18258:24tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18258:49, 18258:50, 18258:51, 18258:56tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18258:52, 18258:53, 18258:54tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18258:55tensorflow:2.1.0Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.relu', ' torchvision.transforms.Normalize', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.load', ' torchvision.transforms.Grayscale', ' torchvision.datasets.ImageFolder', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', 'torch.nn.CrossEntropyLoss', ' torch.utils.data.sampler.SubsetRandomSampler', ' torch.no_grad', ' torch.save'}memory baseline better,[torch, torchvision]18260:1torchvision:0.10.0Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.relu', ' torchvision.transforms.Normalize', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.load', ' torchvision.transforms.Grayscale', ' torchvision.datasets.ImageFolder', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', 'torch.nn.CrossEntropyLoss', ' torch.utils.data.sampler.SubsetRandomSampler', ' torch.no_grad', ' torch.save'}time variant better,[torch, torchvision]18260:2torchvision:0.9.1Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.max', ' torch.nn.functional.relu', ' torchvision.transforms.Normalize', ' torch.nn.functional.log_softmax', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.load', ' torchvision.transforms.Grayscale', ' torchvision.datasets.ImageFolder', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', 'torch.nn.CrossEntropyLoss', ' torch.utils.data.sampler.SubsetRandomSampler', ' torch.no_grad', ' torch.save'}memory variant better,[torch, torchvision]18260:3torchvision:0.8.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[scikit-learn, tensorflow]18265:1, 18265:4tensorflow:2.7.0, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18265:2, 18265:5, 18265:12, 18265:13, 18265:17, 18265:20, 18265:21, 18265:27, 18265:28, 18265:35, 18265:37, 18265:51, 18265:53, 18265:57, 18265:59, 18265:61tensorflow:2.4.1, tensorflow:2.1.0, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[scikit-learn, tensorflow]18265:3, 18265:25, 18265:60tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[scikit-learn, tensorflow]18265:6, 18265:22tensorflow:2.0.0, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[scikit-learn, tensorflow]18265:7, 18265:32, 18265:56, 18265:63tensorflow:1.15.2, tensorflow:2.2.0, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18265:8, 18265:14, 18265:23, 18265:24, 18265:30, 18265:31, 18265:38, 18265:39, 18265:54, 18265:62tensorflow:1.14.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18265:9, 18265:11, 18265:18, 18265:58tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18265:10, 18265:19, 18265:33, 18265:50, 18265:52, 18265:66, 18265:67, 18265:68tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18265:15, 18265:16tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18265:26, 18265:29, 18265:34, 18265:36, 18265:49, 18265:65, 18265:69tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:1.15.2, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18265:40, 18265:71tensorflow:2.1.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' sklearn.metrics.confusion_matrix', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18265:55, 18265:64, 18265:70, 18265:72tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18273:10, 18273:12, 18273:13, 18273:14, 18273:15, 18273:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18273:17, 18273:18, 18273:20, 18273:24tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18273:19, 18273:21tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18273:25, 18273:27, 18273:28, 18273:30, 18273:31, 18273:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18273:41, 18273:45, 18273:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18273:42, 18273:46, 18273:47, 18273:49tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18273:50, 18273:56tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18273:51tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.callbacks.ReduceLROnPlateau'}score inconsistent[keras, tensorflow]18276:4tensorflow:2.2.0Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, torch, torchvision]18280:1torchvision:0.10.0Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[scikit-learn, torch, torchvision]18280:2torchvision:0.10.0Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, torch, torchvision]18280:3torchvision:0.10.0Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18280:10, 18280:11torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, torch, torchvision]18280:12, 18280:16torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]18280:13torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, torch, torchvision]18280:15torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[scikit-learn, torch, torchvision]18280:17, 18280:20, 18280:21, 18280:22, 18280:23torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,[scikit-learn, torch, torchvision]18280:18, 18280:19torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torchvision.models.resnet50', ' torch.nn.Conv2d', ' torch.nn.Relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18280:24torchvision:0.8.2Type B
{' keras.backend.epsilon', ' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', 'keras.callbacks.ModelCheckpoint', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.backend.clip', ' keras.layers.Dense', ' keras.backend.round', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.backend.sum'}time baseline better,[keras, tensorflow]18282:6tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18286:10tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18286:11, 18286:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18286:12tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18286:13, 18286:30tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18286:14, 18286:15tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18286:17, 18286:19, 18286:20, 18286:22tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18286:18, 18286:21, 18286:23, 18286:24tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18286:25, 18286:27, 18286:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18286:26tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18286:28tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18286:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18286:31tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18287:9, 18287:10, 18287:36tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[scikit-learn, tensorflow]18287:11, 18287:49, 18287:53, 18287:58tensorflow:2.4.1, tensorflow:1.15.2, tensorflow:1.14.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18287:12, 18287:13, 18287:50, 18287:52, 18287:57, 18287:59, 18287:60, 18287:61, 18287:65, 18287:66, 18287:67, 18287:68, 18287:69tensorflow:2.4.1, tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[scikit-learn, tensorflow]18287:14, 18287:15, 18287:23, 18287:30, 18287:38, 18287:40tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[scikit-learn, tensorflow]18287:16tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18287:17, 18287:18, 18287:19, 18287:20, 18287:29, 18287:33, 18287:35tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[scikit-learn, tensorflow]18287:21, 18287:25, 18287:28, 18287:34, 18287:37tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18287:22, 18287:24, 18287:31, 18287:32, 18287:39tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]18287:26, 18287:27tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18287:51tensorflow:1.15.2Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18287:54, 18287:55, 18287:63, 18287:64, 18287:71, 18287:72tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[scikit-learn, tensorflow]18287:56, 18287:62, 18287:70tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.EarlyStopping'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn]18288:10, 18288:12, 18288:14, 18288:16, 18288:17, 18288:21, 18288:22, 18288:23, 18288:24, 18288:27, 18288:30scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.23.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.EarlyStopping'}time variant better,memory baseline better,[keras, scikit-learn]18288:19, 18288:20, 18288:26, 18288:31, 18288:32scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.EarlyStopping'}time variant better,score inconsistent[keras, scikit-learn]18288:25, 18288:28, 18288:29scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.EarlyStopping'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn]18288:81, 18288:82, 18288:83, 18288:84, 18288:85, 18288:89, 18288:90, 18288:91, 18288:92, 18288:93scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.EarlyStopping'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn]18288:86, 18288:87, 18288:88scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.LeakyReLU', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.Dropout', ' keras.callbacks.EarlyStopping'}time baseline better,score inconsistent[keras, scikit-learn]18288:94, 18288:95, 18288:96scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18289:1, 18289:2, 18289:6, 18289:11torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[scikit-learn, torch, torchvision]18289:3, 18289:7, 18289:10, 18289:18torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[scikit-learn, torch, torchvision]18289:4, 18289:5, 18289:14, 18289:19torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,[scikit-learn, torch, torchvision]18289:8, 18289:9, 18289:15torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18289:12, 18289:24torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[scikit-learn, torch, torchvision]18289:13, 18289:16, 18289:17, 18289:21, 18289:23torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, torch, torchvision]18289:20torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]18289:22torchvision:0.8.2Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18290:10, 18290:11, 18290:12, 18290:14tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18290:13, 18290:16tensorflow:2.4.1Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18290:15, 18290:51tensorflow:2.4.1, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18290:17, 18290:20, 18290:21, 18290:22, 18290:23, 18290:42, 18290:43tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18290:18, 18290:19, 18290:50tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18290:24, 18290:41tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18290:25, 18290:26, 18290:27, 18290:28, 18290:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18290:29, 18290:30, 18290:31tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18290:44tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18290:45, 18290:46tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18290:47, 18290:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18290:49, 18290:53, 18290:55tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18290:54tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18290:56tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[keras, tensorflow]18294:3tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[keras, tensorflow]18294:4tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[keras, tensorflow]18294:5tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, tensorflow]18294:6tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[keras, tensorflow]18294:7tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18294:9, 18294:41tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[keras, scikit-learn, tensorflow]18294:11tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18294:12, 18294:15, 18294:29, 18294:44, 18294:46tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18294:13, 18294:16, 18294:26, 18294:34, 18294:42, 18294:47tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[keras, scikit-learn, tensorflow]18294:14, 18294:43, 18294:48tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18294:17, 18294:18, 18294:22, 18294:35tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18294:19, 18294:21, 18294:36, 18294:39tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18294:20, 18294:24, 18294:33, 18294:38, 18294:40, 18294:50, 18294:51, 18294:53, 18294:55, 18294:56tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18294:23, 18294:37, 18294:49tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18294:25, 18294:27, 18294:28, 18294:32tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18294:30, 18294:45tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[keras, scikit-learn, tensorflow]18294:31, 18294:54tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' keras.backend.clear_session', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.LearningRateScheduler', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18294:52tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18303:10, 18303:11, 18303:12, 18303:13, 18303:14, 18303:15, 18303:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18303:17, 18303:18, 18303:19, 18303:20, 18303:21, 18303:22, 18303:23, 18303:26, 18303:27, 18303:32tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18303:41, 18303:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.callbacks.LearningRateScheduler', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18303:42, 18303:43, 18303:44, 18303:45, 18303:46, 18303:47, 18303:48, 18303:49, 18303:50, 18303:51, 18303:52, 18303:53, 18303:54, 18303:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18309:10, 18309:32tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18309:11tensorflow:2.4.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18309:12, 18309:13, 18309:14, 18309:15, 18309:16tensorflow:2.4.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,[keras, scikit-learn, tensorflow]18309:17, 18309:19, 18309:21, 18309:23tensorflow:2.3.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}score inconsistent[keras, scikit-learn, tensorflow]18309:20tensorflow:2.3.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}memory baseline better,[keras, scikit-learn, tensorflow]18309:25, 18309:26, 18309:28, 18309:30, 18309:31tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18309:27tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18309:29tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}memory variant better,[keras, scikit-learn, tensorflow]18309:41, 18309:45, 18309:47, 18309:48tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18309:42, 18309:44, 18309:46tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.KFold', ' sklearn.metrics.accuracy_score', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.optimizers.adam', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18309:43tensorflow:2.2.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18310:10, 18310:11, 18310:13, 18310:15tensorflow:2.4.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18310:12, 18310:14, 18310:16, 18310:17, 18310:19, 18310:20, 18310:21, 18310:22, 18310:23tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18310:18tensorflow:2.3.1Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18310:47, 18310:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[keras, tensorflow]18311:4tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[keras, tensorflow]18311:6tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18323:10, 18323:11, 18323:16, 18323:31, 18323:32tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18323:12tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18323:13, 18323:14, 18323:27tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18323:15, 18323:25, 18323:26tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18323:17, 18323:19, 18323:23tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18323:18, 18323:51tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18323:20, 18323:21, 18323:22, 18323:24, 18323:47tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18323:29tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18323:30tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18323:41tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18323:43, 18323:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18323:44, 18323:45, 18323:48, 18323:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18323:46tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' sklearn.utils.shuffle', ' keras.optimizers.Nadam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18323:50, 18323:54tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18324:41tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18324:42, 18324:51tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18324:43, 18324:44, 18324:45, 18324:52tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18324:46, 18324:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18324:47tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18324:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18324:49tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18324:50, 18324:53tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18324:54tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.confusion_matrix', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18324:55tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18326:10, 18326:14, 18326:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18326:11, 18326:15, 18326:46, 18326:47tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18326:12, 18326:30, 18326:31, 18326:32, 18326:48tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18326:17tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18326:18, 18326:19tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18326:20tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18326:21, 18326:25, 18326:26, 18326:27, 18326:28, 18326:44, 18326:45, 18326:49tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18326:22, 18326:24tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18326:23tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18326:29, 18326:41, 18326:42, 18326:43, 18326:52, 18326:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18326:50, 18326:51tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.layers.ZeroPadding2D', ' keras.preprocessing.image.ImageDataGenerator', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.layers.Activation', ' keras.callbacks.ReduceLROnPlateau', ' keras.regularizers.l2', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18326:54, 18326:55, 18326:56tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D'}time variant better,memory baseline better,[keras, tensorflow]18331:3, 18331:4tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D'}time variant better,memory variant better,[keras, tensorflow]18331:6, 18331:7tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18331:9, 18331:10, 18331:11, 18331:12, 18331:13, 18331:14, 18331:15, 18331:16, 18331:17, 18331:18, 18331:19, 18331:20, 18331:21, 18331:22, 18331:23, 18331:24, 18331:25tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18331:26, 18331:27, 18331:28, 18331:29, 18331:30, 18331:31, 18331:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18331:41, 18331:42, 18331:43, 18331:44, 18331:45, 18331:46, 18331:47, 18331:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18331:49, 18331:50, 18331:51, 18331:52, 18331:53, 18331:54, 18331:55, 18331:56tensorflow:2.1.0Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.backend.clear_session', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn]18333:50scikit-learn:0.24.2Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.backend.clear_session', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn]18333:51scikit-learn:0.23.2Type B
{' keras.layers.Activation', ' keras.layers.Conv2D', ' keras.models.Model', ' keras.backend.clear_session', ' keras.utils.to_categorical', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.optimizers.SGD', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.preprocessing.image.ImageDataGenerator', ' keras.layers.Input', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', ' keras.callbacks.ReduceLROnPlateau', ' keras.callbacks.EarlyStopping', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn]18333:53scikit-learn:0.22Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.callbacks.ReduceLROnPlateau'}memory variant better,[keras, tensorflow]18341:2, 18341:4tensorflow:2.4.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory variant better,[keras, tensorflow]18341:3, 18341:7tensorflow:2.3.1, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.callbacks.ReduceLROnPlateau'}time variant better,memory variant better,score inconsistent[keras, tensorflow]18341:6tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18347:10, 18347:11, 18347:12, 18347:13, 18347:17, 18347:18, 18347:19, 18347:20, 18347:21, 18347:25, 18347:26, 18347:27, 18347:28, 18347:29tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18347:14, 18347:15, 18347:16, 18347:22, 18347:23, 18347:24, 18347:30, 18347:31, 18347:32tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18347:41, 18347:42, 18347:43, 18347:44, 18347:45, 18347:49, 18347:50, 18347:51, 18347:52, 18347:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18347:46, 18347:47, 18347:48, 18347:54, 18347:55, 18347:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D'}time variant better,[keras, tensorflow]18354:3tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D'}time variant better,memory variant better,[keras, tensorflow]18354:4tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D'}time variant better,memory variant better,score inconsistent[keras, tensorflow]18354:6tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.layers.MaxPool2D'}time variant better,score inconsistent[keras, tensorflow]18354:7tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18354:9, 18354:10, 18354:11, 18354:12, 18354:13, 18354:14, 18354:15, 18354:16, 18354:18, 18354:19tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18354:17, 18354:20, 18354:21, 18354:22, 18354:23, 18354:24tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18354:25, 18354:26, 18354:27, 18354:28, 18354:29, 18354:30, 18354:31, 18354:32tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18354:41, 18354:44, 18354:45, 18354:47, 18354:48tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18354:42, 18354:43, 18354:49, 18354:52, 18354:53, 18354:54, 18354:55, 18354:56tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18354:46tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.optimizers.adam', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPool2D', ' keras.layers.Dropout', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18354:50, 18354:51tensorflow:2.1.0Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[scikit-learn, torch, torchvision]18355:1, 18355:2, 18355:3, 18355:6, 18355:7, 18355:10, 18355:11torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,[scikit-learn, torch, torchvision]18355:4, 18355:5torchvision:0.10.0Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[scikit-learn, torch, torchvision]18355:9, 18355:14, 18355:15torchvision:0.9.1Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18355:12torchvision:0.9.1Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[scikit-learn, torch, torchvision]18355:13torchvision:0.9.1Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]18355:16, 18355:17, 18355:23torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, torch, torchvision]18355:18torchvision:0.8.2Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, torch, torchvision]18355:20, 18355:21, 18355:22, 18355:24torchvision:0.8.2Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.randperm', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18359:1, 18359:2, 18359:3, 18359:6, 18359:7, 18359:11, 18359:18torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.randperm', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, torch, torchvision]18359:4, 18359:5, 18359:8, 18359:9, 18359:15torchvision:0.10.0, torchvision:0.9.1Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.randperm', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, torch, torchvision]18359:10torchvision:0.9.1Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.randperm', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]18359:12, 18359:16, 18359:17, 18359:20, 18359:21, 18359:22, 18359:23torchvision:0.9.1, torchvision:0.8.2Type B
{' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torch.log', ' torchvision.transforms.ToPILImage', ' torch.cuda.empty_cache', ' torch.nn.BatchNorm2d', ' torch.nn.Relu', ' torch.nn.Conv2d', ' torch.nn.functional.softmax', ' torch.optim.lr_scheduler.StepLR', ' torch.cuda.is_available', ' torch.optim.Adam', ' torchvision.transforms.RandomAffine', ' torch.nn.BatchNorm1d', ' torch.nn.Sequential', ' torch.randperm', ' torch.device', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, torch, torchvision]18359:13, 18359:24torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18368:1, 18368:2, 18368:3, 18368:6, 18368:10torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, torch, torchvision]18368:4, 18368:15torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,[scikit-learn, torch, torchvision]18368:5torchvision:0.10.0Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18368:7, 18368:11torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[scikit-learn, torch, torchvision]18368:8torchvision:0.10.0Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,[scikit-learn, torch, torchvision]18368:9torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, torch, torchvision]18368:12, 18368:23torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18368:13, 18368:16torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, torch, torchvision]18368:14, 18368:19torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18368:17, 18368:20, 18368:21, 18368:22, 18368:24torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.BatchNorm1d', ' torch.device', ' torchvision.transforms.Compose', ' torch.nn.functional.max_pool2d', ' torch.nn.functional.cross_entropy', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18368:18torchvision:0.8.2Type B
{' torchvision.models.resnet34', ' albumentations.Compose', ' albumentations.ShiftScaleRotate', ' torch.cuda.is_available', ' albumentations.RandomBrightnessContrast', ' albumentations.Resize', ' albumentations.pytorch.transforms.ToTensor', ' albumentations.RandomScale', ' torch.nn.Linear', ' torch.nn.functional.cross_entropy', ' torch.utils.data.DataLoader', ' torch.optim.Adam', 'albumentations.GaussianBlur', ' albumentations.CLAHE', ' torch.argmax', ' torch.no_grad', ' torch.tensor', ' torch.nn.Conv2d'}score inconsistent[albumentations, torch, torchvision]18374:4torchvision:0.10.0Type B
{' torchvision.models.resnet34', ' albumentations.Compose', ' albumentations.ShiftScaleRotate', ' torch.cuda.is_available', ' albumentations.RandomBrightnessContrast', ' albumentations.Resize', ' albumentations.pytorch.transforms.ToTensor', ' albumentations.RandomScale', ' torch.nn.Linear', ' torch.nn.functional.cross_entropy', ' torch.utils.data.DataLoader', ' torch.optim.Adam', 'albumentations.GaussianBlur', ' albumentations.CLAHE', ' torch.argmax', ' torch.no_grad', ' torch.tensor', ' torch.nn.Conv2d'}memory variant better,[albumentations, torch, torchvision]18374:11, 18374:12torchvision:0.8.2Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[keras, tensorflow]18379:3, 18379:7tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[keras, tensorflow]18379:4, 18379:6tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[keras, tensorflow]18379:5tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[keras, scikit-learn, tensorflow]18379:9, 18379:10, 18379:16, 18379:33, 18379:35, 18379:38, 18379:50, 18379:51tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18379:11, 18379:12, 18379:13, 18379:14, 18379:15, 18379:34, 18379:37tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18379:18tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18379:19, 18379:36, 18379:39tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[keras, scikit-learn, tensorflow]18379:20, 18379:49, 18379:54tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18379:24, 18379:29, 18379:30, 18379:31, 18379:41, 18379:45, 18379:46, 18379:47tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[keras, scikit-learn, tensorflow]18379:25, 18379:26, 18379:28, 18379:32, 18379:44, 18379:48tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18379:27tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', ' tensorflow.keras.layers.LeakyReLU', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,[keras, scikit-learn, tensorflow]18379:40, 18379:42, 18379:52, 18379:55, 18379:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', 'keras.layers.Dropout', ' keras.models.Sequential', ' keras.callbacks.callbacks.EarlyStopping'}time baseline better,score inconsistent[keras, tensorflow]18382:7tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,[keras, scikit-learn, tensorflow]18382:42tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}score inconsistent[keras, scikit-learn, tensorflow]18382:43, 18382:54, 18382:55tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18382:44tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18382:45tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18382:46, 18382:47, 18382:48tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]18382:49tensorflow:2.1.0Type B
{' keras.layers.Conv2D', ' keras.utils.to_categorical', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.callbacks.callbacks.EarlyStopping', ' keras.models.Sequential', ' keras.layers.Dropout', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18382:50, 18382:51tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,[scikit-learn, tensorflow]18396:1, 18396:15tensorflow:2.7.0, tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18396:2, 18396:7tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]18396:3tensorflow:2.7.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,score inconsistent[scikit-learn, tensorflow]18396:4, 18396:5, 18396:32, 18396:38tensorflow:2.7.0, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory baseline better,[scikit-learn, tensorflow]18396:6, 18396:8, 18396:14tensorflow:2.7.0, tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,[scikit-learn, tensorflow]18396:9, 18396:20, 18396:28, 18396:35tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,[scikit-learn, tensorflow]18396:10, 18396:31, 18396:39tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,[scikit-learn, tensorflow]18396:11, 18396:27tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,score inconsistent[scikit-learn, tensorflow]18396:12tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]18396:13, 18396:26, 18396:36tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory baseline better,[scikit-learn, tensorflow]18396:16tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]18396:17, 18396:19, 18396:21, 18396:25, 18396:29, 18396:33, 18396:34tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}memory variant better,[scikit-learn, tensorflow]18396:18, 18396:37tensorflow:2.3.1, tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}score inconsistent[scikit-learn, tensorflow]18396:23, 18396:24tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', 'shap', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling2D'}time baseline better,score inconsistent[scikit-learn, tensorflow]18396:30, 18396:40tensorflow:2.2.0, tensorflow:2.1.0Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18400:1, 18400:2, 18400:3, 18400:7, 18400:10torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, torch, torchvision]18400:4, 18400:5, 18400:8, 18400:9, 18400:15, 18400:19torchvision:0.10.0, torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[scikit-learn, torch, torchvision]18400:6, 18400:11torchvision:0.10.0, torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[scikit-learn, torch, torchvision]18400:12torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[scikit-learn, torch, torchvision]18400:13, 18400:16, 18400:17, 18400:20, 18400:21, 18400:22, 18400:23, 18400:24torchvision:0.9.1, torchvision:0.8.2Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,[scikit-learn, torch, torchvision]18400:14torchvision:0.9.1Type B
{' torch.LongTensor', ' torch.cat', ' torch.nn.Dropout2d', ' torchvision.transforms.ToTensor', ' torch.nn.Linear', ' torch.utils.data.DataLoader', ' torchvision.transforms.ToPILImage', ' torch.nn.BatchNorm2d', ' torch.nn.Conv2d', ' torch.nn.functional.relu', ' torch.nn.functional.log_softmax', ' torch.cuda.is_available', ' torch.optim.Adam', ' torch.zeros', ' torchvision.transforms.RandomAffine', ' torchvision.transforms.RandomCrop', ' torch.nn.CrossEntropyLoss', ' torch.device', ' torch.nn.Dropout', ' torch.nn.MaxPool2d', ' torchvision.transforms.Compose', ' torch.no_grad', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[scikit-learn, torch, torchvision]18400:18torchvision:0.8.2Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]18404:1, 18404:3tensorflow:2.7.0, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.callbacks.ModelCheckpoint', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout'}time baseline better,[keras, tensorflow]18404:1tensorflow:2.7.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time baseline better,[keras, scikit-learn, tensorflow]18404:2, 18404:4, 18404:5tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.3.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.callbacks.ModelCheckpoint', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout'}memory variant better,[keras, tensorflow]18404:2tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.callbacks.ModelCheckpoint', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout'}time variant better,memory variant better,score inconsistent[keras, tensorflow]18404:3, 18404:4tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18404:6, 18404:7, 18404:8tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', 'keras.callbacks.ModelCheckpoint', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout'}memory variant better,score inconsistent[keras, tensorflow]18404:6, 18404:7tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18404:9tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]18404:10, 18404:12, 18404:17, 18404:19, 18404:20, 18404:21, 18404:26, 18404:28, 18404:29, 18404:42, 18404:43, 18404:44, 18404:45, 18404:49, 18404:50, 18404:52, 18404:53tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18404:11, 18404:13, 18404:18, 18404:25, 18404:27, 18404:41, 18404:51tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18404:14tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]18404:15, 18404:16, 18404:23, 18404:31, 18404:46, 18404:47, 18404:48, 18404:54, 18404:55tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.Dropout', ' keras.callbacks.ModelCheckpoint', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18404:22, 18404:24, 18404:30, 18404:32, 18404:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer', ' nltk.download', ' sklearn.model_selection.train_test_split', ' nltk.pos_tag', ' nltk.corpus.stopwords.words', ' nltk.word_tokenize'}memory baseline better,[nltk, scikit-learn]18760:2, 18760:3scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer', ' nltk.download', ' sklearn.model_selection.train_test_split', ' nltk.pos_tag', ' nltk.corpus.stopwords.words', ' nltk.word_tokenize'}memory variant better,[nltk, scikit-learn]18760:8scikit-learn:0.19.2Type B
{'spacy.load', ' sklearn.svm.SVC'}time variant better,memory variant better,score inconsistent[scikit-learn, spacy]18887:1, 18887:4, 18887:5spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC'}time variant better,score inconsistent[scikit-learn, spacy]18887:2, 18887:3spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC'}memory baseline better,score inconsistent[scikit-learn, spacy]18887:6, 18887:7, 18887:8spacy:3.0.6Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}time variant better,memory variant better,score inconsistent[category_encoders, scikit-learn]19459:8, 19459:9scikit-learn:0.20.3, scikit-learn:0.21.3Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}time baseline better,memory variant better,[category_encoders, scikit-learn]19459:10, 19459:11scikit-learn:0.22, scikit-learn:0.22.1Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}time baseline better,[category_encoders, scikit-learn]19459:12, 19459:31, 19459:32, 19459:35scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:1.0.1Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}memory variant better,[category_encoders, scikit-learn]19459:14, 19459:17, 19459:18, 19459:21scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.22.1Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}time baseline better,memory variant better,score inconsistent[category_encoders, scikit-learn]19459:15scikit-learn:0.20.3Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}memory variant better,score inconsistent[category_encoders, scikit-learn]19459:16scikit-learn:0.21.3Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}score inconsistent[category_encoders, scikit-learn]19459:22, 19459:23, 19459:29, 19459:30scikit-learn:0.20.3, scikit-learn:0.21.3Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}memory baseline better,[category_encoders, scikit-learn]19459:26scikit-learn:0.23.2Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}time variant better,memory baseline better,[category_encoders, scikit-learn]19459:27scikit-learn:0.24.2Type B
{'sklearn.metrics.roc_auc_score', ' category_encoders.TargetEncoder', ' sklearn.model_selection.StratifiedKFold', ' category_encoders.WOEEncoder', ' sklearn.linear_model.LogisticRegression', ' category_encoders.CatBoostEncoder'}time baseline better,memory baseline better,[category_encoders, scikit-learn]19459:33, 19459:34scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' sklearn.preprocessing.FunctionTransformer', ' sklearn.compose.make_column_transformer', ' category_encoders.LeaveOneOutEncoder', ' sklearn.pipeline.make_union', ' sklearn.pipeline.make_pipeline', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,score inconsistent[category_encoders, scikit-learn]19469:9, 19469:10scikit-learn:0.21.3, scikit-learn:0.22Type B
{' sklearn.preprocessing.FunctionTransformer', ' sklearn.compose.make_column_transformer', ' category_encoders.LeaveOneOutEncoder', ' sklearn.pipeline.make_union', ' sklearn.pipeline.make_pipeline', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}memory variant better,score inconsistent[category_encoders, scikit-learn]19469:11, 19469:16, 19469:17, 19469:18scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.22Type B
{' sklearn.preprocessing.FunctionTransformer', ' sklearn.compose.make_column_transformer', ' category_encoders.LeaveOneOutEncoder', ' sklearn.pipeline.make_union', ' sklearn.pipeline.make_pipeline', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}score inconsistent[category_encoders, scikit-learn]19469:12, 19469:13, 19469:15, 19469:19, 19469:20, 19469:23, 19469:24, 19469:25, 19469:30, 19469:31, 19469:32scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.preprocessing.FunctionTransformer', ' sklearn.compose.make_column_transformer', ' category_encoders.LeaveOneOutEncoder', ' sklearn.pipeline.make_union', ' sklearn.pipeline.make_pipeline', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', 'sklearn.preprocessing.MinMaxScaler'}memory baseline better,score inconsistent[category_encoders, scikit-learn]19469:22, 19469:26, 19469:27, 19469:29, 19469:33, 19469:34scikit-learn:0.20.3, scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' category_encoders.TargetEncoder', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', 'sklearn.preprocessing.StandardScaler'}memory baseline better,[category_encoders, scikit-learn]19504:2, 19504:9, 19504:16, 19504:23scikit-learn:1.0.1, scikit-learn:0.21.3Type B
{' category_encoders.TargetEncoder', ' sklearn.metrics.roc_auc_score', ' sklearn.model_selection.StratifiedKFold', 'sklearn.preprocessing.StandardScaler'}memory baseline better,score inconsistent[category_encoders, scikit-learn]19504:8, 19504:15, 19504:22scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{' sklearn.metrics.f1_score', ' sklearn.metrics.precision_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.ensemble.RandomForestClassifier', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.metrics.confusion_matrix'}time baseline better,[scikit-learn, xgboost]19528:4xgboost:1.2.1Type B
{' sklearn.metrics.f1_score', ' sklearn.metrics.precision_score', ' xgboost.XGBClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.ensemble.RandomForestClassifier', 'sklearn.calibration.CalibratedClassifierCV', ' sklearn.metrics.confusion_matrix'}score inconsistent[scikit-learn, xgboost]19528:7xgboost:0.90Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}memory baseline better,score inconsistent[catboost, scikit-learn]19567:3, 19567:10, 19567:11, 19567:17, 19567:18, 19567:24, 19567:25, 19567:31, 19567:32scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]19567:4scikit-learn:0.22.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}time variant better,score inconsistent[catboost, scikit-learn]19567:5scikit-learn:0.23.2Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]19567:6, 19567:7, 19567:13, 19567:14scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}score inconsistent[catboost, scikit-learn]19567:12, 19567:19, 19567:26, 19567:33scikit-learn:0.23.2Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}memory variant better,score inconsistent[catboost, scikit-learn]19567:20, 19567:21, 19567:34, 19567:35scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}memory baseline better,[catboost, scikit-learn]19567:38, 19567:39scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}memory variant better,[catboost, scikit-learn]19567:41, 19567:42scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]19567:66, 19567:67scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}time baseline better,score inconsistent[catboost, scikit-learn]19567:68scikit-learn:0.23.2Type B
{' sklearn.metrics.plot_roc_curve', ' sklearn.model_selection.StratifiedKFold', ' sklearn.linear_model.LogisticRegression', 'catboost.CatBoostClassifier', ' sklearn.ensemble.StackingClassifier', ' sklearn.metrics.roc_auc_score', ' sklearn.ensemble.HistGradientBoostingClassifier'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]19567:69, 19567:70scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}time variant better,[nltk, scikit-learn]19625:1, 19625:4, 19625:5, 19625:7, 19625:9, 19625:17scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}time variant better,memory baseline better,[nltk, scikit-learn]19625:2, 19625:3, 19625:18scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}time variant better,memory variant better,[nltk, scikit-learn]19625:6, 19625:12scikit-learn:0.21.3, scikit-learn:0.22.1Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}memory variant better,[nltk, scikit-learn]19625:8, 19625:13, 19625:14, 19625:16, 19625:21, 19625:22, 19625:24scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.21.3Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}time baseline better,memory baseline better,[nltk, scikit-learn]19625:10, 19625:26, 19625:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}memory baseline better,[nltk, scikit-learn]19625:11, 19625:19scikit-learn:0.23.2Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}time baseline better,memory variant better,[nltk, scikit-learn]19625:20, 19625:28, 19625:29, 19625:30, 19625:31, 19625:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.TweetTokenizer', ' sklearn.metrics.classification_report'}time baseline better,[nltk, scikit-learn]19625:25scikit-learn:1.0.1Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}time variant better,score inconsistent[nltk, scikit-learn]19635:1, 19750:1, 19753:1scikit-learn:0.20.3Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19635:2, 19635:8, 19635:9, 19635:15, 19635:16, 19635:22, 19635:23, 19750:2, 19750:8, 19750:9, 19750:15, 19750:16, 19750:22, 19750:23, 19753:2, 19753:8, 19753:9, 19753:15, 19753:16, 19753:22, 19753:23scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19635:3, 19635:10, 19635:18, 19635:25, 19750:17, 19750:18, 19753:10, 19753:25scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}memory variant better,score inconsistent[nltk, scikit-learn]19635:4, 19635:11, 19635:17, 19635:24, 19750:3, 19750:4, 19750:10, 19750:11, 19750:24, 19750:25, 19753:3, 19753:4, 19753:11, 19753:17, 19753:18, 19753:24scikit-learn:0.22.1, scikit-learn:0.22Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19635:5, 19635:12, 19635:20, 19635:27, 19750:5, 19750:12, 19750:13, 19750:19, 19750:20, 19750:26, 19750:27, 19753:5, 19753:6, 19753:13scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}memory baseline better,score inconsistent[nltk, scikit-learn]19635:6, 19635:13, 19635:19, 19635:26, 19750:6, 19753:12, 19753:19, 19753:20, 19753:26, 19753:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}time baseline better,score inconsistent[nltk, scikit-learn]19635:7, 19635:14, 19753:7, 19753:14scikit-learn:1.0.1Type B
{' sklearn.naive_bayes.ComplementNB', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.recall_score', ' nltk.tokenize.RegexpTokenizer', 'sklearn.metrics.precision_score', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}score inconsistent[nltk, scikit-learn]19635:21, 19635:28, 19750:7, 19750:14, 19750:21, 19750:28, 19753:21, 19753:28scikit-learn:1.0.1Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time variant better,score inconsistent[nltk, scikit-learn]19639:1, 19639:5, 19639:7, 19639:17, 19639:23scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]19639:2, 19639:3, 19639:10, 19639:18scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}score inconsistent[nltk, scikit-learn]19639:4, 19639:6, 19639:9, 19639:12, 19639:15scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19639:8, 19639:13, 19639:14, 19639:16, 19639:21scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.21.3Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19639:11, 19639:19, 19639:26, 19639:27scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}memory variant better,score inconsistent[nltk, scikit-learn]19639:20, 19639:22, 19639:24scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time baseline better,score inconsistent[nltk, scikit-learn]19639:25scikit-learn:1.0.1Type B
{'sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.tree.DecisionTreeClassifier', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19639:28, 19639:29, 19639:30, 19639:31, 19639:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}time baseline better,score inconsistent[nltk, scikit-learn]19642:1, 19642:7, 19642:9scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19642:2, 19642:3, 19642:10scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19642:4, 19642:5, 19642:6scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}memory variant better,score inconsistent[nltk, scikit-learn]19642:8scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}memory baseline better,score inconsistent[nltk, scikit-learn]19642:11, 19642:18, 19642:19, 19642:26, 19642:27scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19642:12, 19642:13, 19642:14, 19642:16, 19642:20, 19642:21, 19642:22, 19642:24, 19642:28, 19642:29, 19642:30, 19642:31, 19642:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}time variant better,score inconsistent[nltk, scikit-learn]19642:15, 19642:17, 19642:23scikit-learn:0.20.3, scikit-learn:1.0.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.classification_report', ' nltk.tokenize.RegexpTokenizer'}score inconsistent[nltk, scikit-learn]19642:25scikit-learn:1.0.1Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.GaussianNB', ' sklearn.metrics.plot_confusion_matrix', ' nltk.corpus.stopwords.words', ' sklearn.neighbors.KNeighborsClassifier', 'sklearn.ensemble.RandomForestClassifier'}time variant better,memory variant better,[nltk, scikit-learn]19647:4, 19647:12, 19647:13scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.GaussianNB', ' sklearn.metrics.plot_confusion_matrix', ' nltk.corpus.stopwords.words', ' sklearn.neighbors.KNeighborsClassifier', 'sklearn.ensemble.RandomForestClassifier'}memory variant better,[nltk, scikit-learn]19647:5scikit-learn:0.22Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.GaussianNB', ' sklearn.metrics.plot_confusion_matrix', ' nltk.corpus.stopwords.words', ' sklearn.neighbors.KNeighborsClassifier', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,memory baseline better,[nltk, scikit-learn]19647:11scikit-learn:0.23.2Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.GaussianNB', ' sklearn.metrics.plot_confusion_matrix', ' nltk.corpus.stopwords.words', ' sklearn.neighbors.KNeighborsClassifier', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19647:19, 19647:27scikit-learn:0.23.2Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.GaussianNB', ' sklearn.metrics.plot_confusion_matrix', ' nltk.corpus.stopwords.words', ' sklearn.neighbors.KNeighborsClassifier', 'sklearn.ensemble.RandomForestClassifier'}score inconsistent[nltk, scikit-learn]19647:20, 19647:21, 19647:28, 19647:29scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[nltk, scikit-learn]19676:1, 19676:4, 19676:5, 19676:17, 19676:23scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[nltk, scikit-learn]19676:2scikit-learn:0.24.2Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]19676:3, 19676:18, 19676:19scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[nltk, scikit-learn]19676:6, 19676:8, 19676:14, 19676:16, 19676:20, 19676:24scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.22.1Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}score inconsistent[nltk, scikit-learn]19676:7, 19676:9, 19676:15scikit-learn:0.20.3, scikit-learn:1.0.1Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19676:10, 19676:11, 19676:26, 19676:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19676:12, 19676:28, 19676:29, 19676:30, 19676:31, 19676:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19676:13, 19676:21, 19676:22scikit-learn:0.22, scikit-learn:0.21.3Type B
{' nltk.tokenize.word_tokenize', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[nltk, scikit-learn]19676:25scikit-learn:1.0.1Type B
{'spacy.load', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[spacy, xgboost]19680:2xgboost:1.4.2Type B
{'spacy.load', ' xgboost.XGBClassifier'}time variant better,[spacy, xgboost]19680:5xgboost:1.1.1Type B
{'spacy.load', ' xgboost.XGBClassifier'}score inconsistent[spacy, xgboost]19680:7xgboost:0.90Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[catboost, xgboost]19708:2, 19708:8, 19708:9, 19708:15, 19708:16, 19708:22, 19708:23, 19708:29, 19708:30, 19708:36, 19886:2, 19886:3, 19886:23, 19886:30, 19886:37, 19886:44, 25354:4, 25354:7, 25354:14, 25354:19, 25354:21, 25354:28, 25354:35, 25354:42, 25354:49, 25354:56, 25354:63, 25354:70xgboost:1.4.2, xgboost:1.5.1, xgboost:1.3.3, xgboost:1.2.1, xgboost:0.90, xgboost:1.1.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time variant better,score inconsistent[catboost, xgboost]19708:3, 19708:4, 19886:4, 19886:5, 19886:6, 19886:8, 19886:17, 19886:22, 19886:24, 19886:29, 19886:31, 19886:43xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}score inconsistent[catboost, xgboost]19708:5, 19886:10, 19886:36, 19886:50, 19886:57xgboost:1.1.1, xgboost:1.3.3, xgboost:1.5.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time baseline better,score inconsistent[catboost, xgboost]19708:6, 19708:7, 19886:7, 19886:15xgboost:1.0.2, xgboost:0.90, xgboost:1.5.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[catboost, xgboost]19708:10, 19708:11, 19708:12, 19708:13, 19708:17, 19708:18, 19708:19, 19708:20, 19708:24, 19708:25, 19708:26, 19708:27, 19708:31, 19708:32, 19708:33, 19708:34, 19708:38, 19708:39, 19708:40, 19708:41, 19886:11, 19886:12, 19886:20, 19886:25, 19886:26, 19886:32, 19886:33, 19886:34, 19886:38, 19886:39, 19886:40, 19886:41, 19886:45, 19886:46, 19886:47, 19886:48, 19886:66, 19886:67, 19886:68, 19886:69, 19886:73, 19886:74, 19886:75, 19886:76xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}memory variant better,score inconsistent[catboost, xgboost]19708:14, 19708:21, 19708:28, 19708:35, 19708:42, 19708:45, 19708:46, 19708:47, 19708:48, 19708:52, 19708:53, 19708:54, 19708:55, 19708:59, 19708:60, 19708:61, 19708:62, 19886:13, 19886:19, 19886:27, 19886:52, 19886:53, 19886:54, 19886:55, 19886:59, 19886:60, 19886:61, 19886:62, 25354:3xgboost:0.90, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[catboost, xgboost]19708:37, 19708:64, 19708:65, 19708:71, 19708:72, 25354:55xgboost:1.4.2, xgboost:1.5.1, xgboost:1.0.2Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}memory baseline better,score inconsistent[catboost, xgboost]19708:43, 19708:44, 19708:50, 19708:51, 19708:57, 19708:58, 19886:9, 19886:16, 19886:51, 19886:58, 19886:64, 19886:65, 19886:71, 19886:72, 25354:11xgboost:1.5.1, xgboost:1.4.2, xgboost:1.2.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[catboost, xgboost]19708:49, 19708:56, 19708:63, 19708:66, 19708:67, 19708:68, 19708:69, 19708:70, 19708:73, 19708:74, 19708:75, 19708:76, 19708:77, 19886:14, 19886:18, 19886:21, 19886:28, 19886:35, 19886:42, 19886:49, 19886:56, 19886:63, 19886:70, 19886:77, 25354:2, 25354:8, 25354:9, 25354:10, 25354:16, 25354:17, 25354:23, 25354:24, 25354:30, 25354:31, 25354:37, 25354:38, 25354:44, 25354:45, 25354:51, 25354:52, 25354:57, 25354:58, 25354:59, 25354:65, 25354:66xgboost:0.90, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:1.4.2, xgboost:1.5.1Type B
{'spacy.load', ' sklearn.svm.LinearSVC', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,[scikit-learn, spacy]19709:2spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.LinearSVC', ' sklearn.metrics.accuracy_score'}memory baseline better,[scikit-learn, spacy]19709:3spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.LinearSVC', ' sklearn.metrics.accuracy_score'}time baseline better,[scikit-learn, spacy]19709:5spacy:3.0.6Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' nltk.download', ' sklearn.metrics.accuracy_score', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier'}memory baseline better,score inconsistent[nltk, scikit-learn]19711:1, 19711:2, 19711:9, 19711:10, 19711:17, 19711:18, 19711:25, 19711:26, 19745:1, 19745:2, 19745:9, 19745:10, 19745:17, 19745:18, 19745:25, 19745:26scikit-learn:1.0.1, scikit-learn:0.24.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' nltk.download', ' sklearn.metrics.accuracy_score', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19711:3, 19711:4, 19711:5, 19711:11, 19711:12, 19711:13, 19711:19, 19711:20, 19711:21, 19711:27, 19711:28, 19711:29, 19745:3, 19745:4, 19745:5, 19745:11, 19745:12, 19745:13, 19745:19, 19745:20, 19745:21, 19745:27, 19745:28, 19745:29scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' nltk.download', ' sklearn.metrics.accuracy_score', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier'}memory variant better,score inconsistent[nltk, scikit-learn]19711:6, 19711:14, 19711:22, 19711:30, 19745:6, 19745:14, 19745:22, 19745:30scikit-learn:0.21.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' nltk.download', ' sklearn.metrics.accuracy_score', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.classification_report', 'sklearn.ensemble.RandomForestClassifier'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19711:7, 19711:8, 19711:15, 19711:16, 19711:23, 19711:24, 19711:31, 19711:32, 19745:7, 19745:8, 19745:15, 19745:16, 19745:23, 19745:24, 19745:31, 19745:32scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'sklearn.svm.SVC', ' nltk.download', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time variant better,score inconsistent[nltk, scikit-learn]19715:1, 19715:9, 19715:17, 19715:25scikit-learn:1.0.1Type B
{'sklearn.svm.SVC', ' nltk.download', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]19715:2, 19715:10, 19715:18, 19715:26scikit-learn:0.24.2Type B
{'sklearn.svm.SVC', ' nltk.download', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}memory baseline better,score inconsistent[nltk, scikit-learn]19715:3, 19715:11, 19715:19, 19715:27scikit-learn:0.23.2Type B
{'sklearn.svm.SVC', ' nltk.download', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}score inconsistent[nltk, scikit-learn]19715:4, 19715:5, 19715:12, 19715:13, 19715:20, 19715:21, 19715:28, 19715:29scikit-learn:0.22.1, scikit-learn:0.22Type B
{'sklearn.svm.SVC', ' nltk.download', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time baseline better,score inconsistent[nltk, scikit-learn]19715:6, 19715:7, 19715:14, 19715:15, 19715:22, 19715:23, 19715:30, 19715:31scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{'sklearn.svm.SVC', ' nltk.download', ' sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19715:8, 19715:16, 19715:24, 19715:32scikit-learn:0.19.2Type B
{' nltk.WordNetLemmatizer', ' nltk.stem.PorterStemmer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' nltk.PorterStemmer', 'sklearn.linear_model.LogisticRegression', ' nltk.corpus.stopwords.words'}time baseline better,score inconsistent[nltk, scikit-learn]19736:1, 19736:9, 19736:17, 19736:25scikit-learn:1.0.1Type B
{' nltk.WordNetLemmatizer', ' nltk.stem.PorterStemmer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' nltk.PorterStemmer', 'sklearn.linear_model.LogisticRegression', ' nltk.corpus.stopwords.words'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19736:2, 19736:3, 19736:10, 19736:11, 19736:18, 19736:19, 19736:26, 19736:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.WordNetLemmatizer', ' nltk.stem.PorterStemmer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' nltk.PorterStemmer', 'sklearn.linear_model.LogisticRegression', ' nltk.corpus.stopwords.words'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19736:4, 19736:5, 19736:12, 19736:13, 19736:20, 19736:21, 19736:28, 19736:29scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.WordNetLemmatizer', ' nltk.stem.PorterStemmer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' nltk.PorterStemmer', 'sklearn.linear_model.LogisticRegression', ' nltk.corpus.stopwords.words'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19736:6, 19736:8, 19736:14, 19736:16, 19736:22, 19736:24, 19736:30, 19736:31, 19736:32scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{' nltk.WordNetLemmatizer', ' nltk.stem.PorterStemmer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.train_test_split', ' nltk.PorterStemmer', 'sklearn.linear_model.LogisticRegression', ' nltk.corpus.stopwords.words'}time variant better,score inconsistent[nltk, scikit-learn]19736:7, 19736:15, 19736:23scikit-learn:0.20.3Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}time variant better,score inconsistent[nltk, scikit-learn]19740:1, 19740:15, 19740:23, 19740:25, 19760:15, 19760:25scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}memory baseline better,score inconsistent[nltk, scikit-learn]19740:2, 19740:3, 19740:10, 19760:10, 19760:11, 19760:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}time baseline better,score inconsistent[nltk, scikit-learn]19740:4, 19740:5, 19740:17, 19760:1, 19760:17scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19740:6, 19740:14, 19740:16, 19740:20, 19740:22, 19740:24, 19740:29, 19740:30, 19760:6, 19760:8, 19760:14, 19760:16, 19760:20, 19760:21, 19760:24, 19760:29, 19760:31scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}score inconsistent[nltk, scikit-learn]19740:7, 19740:9, 19760:4, 19760:5, 19760:7, 19760:9, 19760:23scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}memory variant better,score inconsistent[nltk, scikit-learn]19740:8, 19740:12, 19740:13, 19740:21, 19740:28, 19740:31, 19740:32, 19760:13, 19760:22, 19760:28, 19760:32scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:0.21.3Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19740:11, 19740:18, 19740:19, 19740:26, 19740:27, 19760:2, 19760:18, 19760:26scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}time variant better,score inconsistent[scikit-learn, textblob]19759:4, 19759:5, 19759:6, 19759:7, 19759:52, 19759:55textblob:0.15.3, textblob:0.13.1, textblob:0.12.0, textblob:0.11.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}memory baseline better,score inconsistent[scikit-learn, textblob]19759:11, 19759:12, 19759:20, 19759:21textblob:0.17.1, textblob:0.15.3, textblob:0.13.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}time variant better,memory baseline better,score inconsistent[scikit-learn, textblob]19759:13, 19759:14, 19759:15, 19759:19textblob:0.13.1, textblob:0.12.0, textblob:0.11.1, textblob:0.17.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}time baseline better,memory baseline better,score inconsistent[scikit-learn, textblob]19759:22textblob:0.12.0Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}memory variant better,score inconsistent[scikit-learn, textblob]19759:27, 19759:28, 19759:35, 19759:36, 19759:43, 19759:46, 19759:59textblob:0.17.1, textblob:0.15.3, textblob:0.12.0Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}time baseline better,memory variant better,score inconsistent[scikit-learn, textblob]19759:29, 19759:39, 19759:44, 19759:47, 19759:61textblob:0.13.1, textblob:0.11.1, textblob:0.15.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}time variant better,memory variant better,score inconsistent[scikit-learn, textblob]19759:30, 19759:31, 19759:37, 19759:38, 19759:60, 19759:62, 19759:63textblob:0.12.0, textblob:0.11.1, textblob:0.13.1, textblob:0.15.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}time baseline better,score inconsistent[scikit-learn, textblob]19759:51textblob:0.17.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' textblob.TextBlob'}score inconsistent[scikit-learn, textblob]19759:53textblob:0.13.1Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]19760:3, 19760:19scikit-learn:0.23.2Type B
{' nltk.corpus.stopwords.words', ' sklearn.linear_model.LogisticRegression', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19760:12, 19760:30scikit-learn:0.22.1, scikit-learn:0.21.3Type B
{' tensorflow.keras.metrics.Recall', ' tensorflow.keras.optimizers.schedules.PolynomialDecay', ' tensorflow.keras.metrics.Precision', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[tensorflow, transformers]19764:2, 19764:4transformers:4.5.1, transformers:4.1.1Type B
{' tensorflow.keras.metrics.Recall', ' tensorflow.keras.optimizers.schedules.PolynomialDecay', ' tensorflow.keras.metrics.Precision', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[tensorflow, transformers]19764:3transformers:4.2.2Type B
{' tensorflow.keras.metrics.Recall', ' tensorflow.keras.optimizers.schedules.PolynomialDecay', ' tensorflow.keras.metrics.Precision', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[tensorflow, transformers]19764:9, 19764:12, 19764:17, 19764:18transformers:4.6.1, transformers:4.1.1, transformers:4.5.1Type B
{' tensorflow.keras.metrics.Recall', ' tensorflow.keras.optimizers.schedules.PolynomialDecay', ' tensorflow.keras.metrics.Precision', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}score inconsistent[tensorflow, transformers]19764:10, 19764:11, 19764:19, 19764:20transformers:4.5.1, transformers:4.2.2, transformers:4.1.1Type B
{' tensorflow.keras.metrics.Recall', ' tensorflow.keras.optimizers.schedules.PolynomialDecay', ' tensorflow.keras.metrics.Precision', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,score inconsistent[tensorflow, transformers]19764:25, 19764:28transformers:4.6.1, transformers:4.1.1Type B
{' tensorflow.keras.metrics.Recall', ' tensorflow.keras.optimizers.schedules.PolynomialDecay', ' tensorflow.keras.metrics.Precision', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[tensorflow, transformers]19764:26transformers:4.5.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer', ' nltk.download', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.accuracy_score', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}memory baseline better,score inconsistent[nltk, scikit-learn]19767:1, 19767:3, 19767:5, 19767:12, 19767:13, 19767:18scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.24.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer', ' nltk.download', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.accuracy_score', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]19767:2, 19767:4, 19767:9, 19767:10, 19767:11, 19767:17, 19767:19, 19767:20, 19767:21, 19767:25, 19767:26, 19767:27, 19767:28, 19767:29scikit-learn:0.24.2, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.22Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' nltk.stem.WordNetLemmatizer', ' nltk.download', ' sklearn.linear_model.LogisticRegression', ' sklearn.metrics.accuracy_score', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19767:6, 19767:7, 19767:8, 19767:14, 19767:15, 19767:16, 19767:22, 19767:23, 19767:24, 19767:30, 19767:31, 19767:32scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}time variant better,score inconsistent[nltk, scikit-learn]19773:1, 19773:7, 19773:9, 19773:15, 19773:17, 19773:25scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}memory baseline better,score inconsistent[nltk, scikit-learn]19773:2, 19773:3, 19773:10, 19773:18, 19773:26, 19773:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]19773:4, 19773:11, 19773:19scikit-learn:0.22.1, scikit-learn:0.23.2Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}memory variant better,score inconsistent[nltk, scikit-learn]19773:5, 19773:8, 19773:12, 19773:16, 19773:20, 19773:21, 19773:24, 19773:28, 19773:30, 19773:32scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.21.3Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}score inconsistent[nltk, scikit-learn]19773:6, 19773:14, 19773:23scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]19773:13, 19773:22scikit-learn:0.22, scikit-learn:0.21.3Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]19773:29scikit-learn:0.22Type B
{'sklearn.pipeline.Pipeline', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' nltk.SnowballStemmer', ' nltk.corpus.stopwords.words'}time baseline better,score inconsistent[nltk, scikit-learn]19773:31scikit-learn:0.20.3Type B
{' tensorflow.keras.optimizers.Nadam', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.layers.experimental.preprocessing.TextVectorization', ' tensorflow.metrics.recall', ' tensorflow.metrics.Precision', ' tensorflow.keras.initializers.constant', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.layers.GlobalAveragePooling1D'}time variant better,memory variant better,[spacy, tensorflow]19803:3tensorflow:2.3.1Type B
{' tensorflow.keras.layers.GlobalMaxPooling1D', ' tensorflow.keras.layers.Conv1D', ' keras.utils.np_utils.to_categorical', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.layers.experimental.preprocessing.TextVectorization', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.initializers.constant', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.layers.MaxPooling1D', ' tensorflow.keras.Model'}score inconsistent[keras, spacy, tensorflow]19823:11tensorflow:2.4.1Type B
{'spacy.load', ' sklearn.svm.SVC', ' sklearn.model_selection.train_test_split'}time baseline better,[scikit-learn, spacy]19875:5spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[scikit-learn, spacy]19875:6spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC', ' sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, spacy]19875:7spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[scikit-learn, spacy]19875:8spacy:3.0.6Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}score inconsistent[tensorflow, transformers]19999:2, 19999:3, 19999:4, 19999:5, 19999:6, 19999:12transformers:4.5.1, transformers:4.2.2, transformers:4.1.1, transformers:3.5.1, transformers:3.4.0Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[tensorflow, transformers]19999:7, 19999:8transformers:2.11.0, transformers:2.10.0Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[tensorflow, transformers]19999:9, 19999:10, 19999:11, 19999:13, 19999:14, 19999:17, 19999:18, 19999:22, 19999:26, 19999:27, 19999:30transformers:4.6.1, transformers:4.5.1, transformers:4.2.2, transformers:3.5.1, transformers:3.4.0Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[tensorflow, transformers]19999:15, 19999:16, 19999:31, 19999:32transformers:2.11.0, transformers:2.10.0Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[tensorflow, transformers]19999:19, 19999:20, 19999:28, 19999:29transformers:4.2.2, transformers:4.1.1, transformers:3.5.1Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[tensorflow, transformers]19999:21, 19999:25transformers:3.5.1, transformers:4.6.1Type B
{' tensorflow.keras.layers.concatenate', ' transformers.TFDistilBertModel.from_pretrained', 'tensorflow.keras.layers.Dense', ' transformers.DistilBertTokenizer.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' transformers.DistilBertConfig', ' tensorflow.keras.Input', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[tensorflow, transformers]19999:23, 19999:24transformers:2.11.0, transformers:2.10.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.compat.v1.disable_v2_behavior', ' tensorflow.compat.v1.disable_eager_execution'}memory variant better,[keras, tensorflow]20019:4tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', ' keras.utils.to_categorical', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.SGD', ' tensorflow.compat.v1.disable_v2_behavior', ' tensorflow.compat.v1.disable_eager_execution'}time variant better,[keras, tensorflow]20019:7tensorflow:2.1.0Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.svm.LinearSVC', ' sklearn.ensemble.RandomForestClassifier', 'spacy.load'}memory baseline better,[scikit-learn, spacy, xgboost]20043:2xgboost:1.4.2Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.svm.LinearSVC', ' sklearn.ensemble.RandomForestClassifier', 'spacy.load'}time baseline better,score inconsistent[scikit-learn, spacy, xgboost]20043:7xgboost:0.90Type B
{' tensorflow.keras.layers.Input', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.models.Model', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFAutoModel.from_pretrained', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.Adam'}score inconsistent[tensorflow, transformers]20164:29transformers:3.5.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time variant better,score inconsistent[spacy, tensorflow]20197:5tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time baseline better,[spacy, tensorflow]20197:11, 20197:30tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}memory variant better,[spacy, tensorflow]20197:13, 20533:3, 20533:4tensorflow:2.2.0, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}memory variant better,score inconsistent[spacy, tensorflow]20197:14tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}memory baseline better,[spacy, tensorflow]20197:20, 20197:21, 20197:22, 20533:21tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time variant better,memory baseline better,score inconsistent[spacy, tensorflow]20197:23tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}score inconsistent[spacy, tensorflow]20197:32, 20533:14tensorflow:2.1.0Type B
{'spacy.load', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[scikit-learn, spacy]20242:3spacy:3.0.6Type B
{'spacy.load', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[scikit-learn, spacy]20242:7spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline'}memory baseline better,[scikit-learn, spacy]20289:2spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.SVC', ' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline'}time baseline better,memory baseline better,[scikit-learn, spacy]20289:3spacy:3.0.6Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Embedding', ' nltk.tokenize.word_tokenize', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' nltk.corpus.stopwords.words', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}time variant better,memory variant better,[nltk, tensorflow]20371:6, 20371:7, 20371:8tensorflow:2.4.1Type B
{' tensorflow.keras.models.Sequential', ' tensorflow.keras.layers.Embedding', ' nltk.tokenize.word_tokenize', 'tensorflow.keras.layers.Dense', ' tensorflow.keras.preprocessing.text.Tokenizer', ' tensorflow.keras.layers.Dropout', ' nltk.corpus.stopwords.words', ' tensorflow.keras.layers.LSTM', ' tensorflow.keras.layers.Bidirectional', ' tensorflow.keras.preprocessing.sequence.pad_sequences'}score inconsistent[nltk, tensorflow]20371:14, 20371:16, 20371:19, 20371:20tensorflow:2.2.0, tensorflow:2.1.0Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory baseline better,[scikit-learn, spacy]20392:2, 20392:3spacy:3.0.6Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,score inconsistent[scikit-learn, spacy]20392:6spacy:3.0.6Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}score inconsistent[scikit-learn, spacy]20392:7spacy:3.0.6Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[scikit-learn, spacy]20392:8spacy:3.0.6Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}time baseline better,[tensorflow, transformers]20513:3transformers:4.2.2Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}time variant better,[tensorflow, transformers]20513:5transformers:3.5.1Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,[tensorflow, transformers]20513:7transformers:2.11.0Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[tensorflow, transformers]20513:8transformers:2.10.0Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[tensorflow, transformers]20513:9, 20513:12, 20513:17, 20513:18, 20513:20, 20513:21, 20513:22, 20513:25, 20513:26, 20513:28, 20513:29, 20513:30transformers:4.6.1, transformers:4.1.1, transformers:4.5.1, transformers:3.5.1, transformers:3.4.0Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[tensorflow, transformers]20513:10, 20513:13, 20513:14transformers:4.5.1, transformers:3.5.1, transformers:3.4.0Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[tensorflow, transformers]20513:11, 20513:19transformers:4.2.2Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[tensorflow, transformers]20513:15transformers:2.11.0Type B
{'tensorflow.keras.layers.Dense', ' transformers.TFBertModel.from_pretrained', ' tensorflow.keras.models.Model', ' tensorflow.keras.layers.Dropout', ' transformers.BertTokenizer.from_pretrained', ' tensorflow.keras.Input', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[tensorflow, transformers]20513:16, 20513:23, 20513:24, 20513:31, 20513:32transformers:2.10.0, transformers:2.11.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time baseline better,memory variant better,score inconsistent[spacy, tensorflow]20533:5tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time variant better,[spacy, tensorflow]20533:11, 20533:13, 20533:30tensorflow:2.4.1, tensorflow:2.2.0, tensorflow:2.3.1Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time baseline better,memory baseline better,[spacy, tensorflow]20533:20, 20533:22tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}memory baseline better,score inconsistent[spacy, tensorflow]20533:23tensorflow:2.1.0Type B
{' tensorflow.keras.models.Sequential', 'spacy.load', ' tensorflow.keras.layers.Dense', ' tensorflow.random.set_seed'}time baseline better,score inconsistent[spacy, tensorflow]20533:32tensorflow:2.1.0Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, spacy]20548:2, 20548:3spacy:3.0.6Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}score inconsistent[scikit-learn, spacy]20548:6, 20548:7spacy:3.0.6Type B
{'spacy.load', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[scikit-learn, spacy]20548:8spacy:3.0.6Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}time variant better,memory baseline better,[nltk, scikit-learn]20612:2, 20612:10, 20612:18, 20612:19, 20612:26, 20612:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}memory baseline better,[nltk, scikit-learn]20612:3, 20612:11scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}time variant better,memory variant better,[nltk, scikit-learn]20612:4, 20612:6, 20612:12, 20612:14, 20612:20, 20612:21, 20612:22scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.22Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}memory variant better,[nltk, scikit-learn]20612:5, 20612:13scikit-learn:0.22Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}time baseline better,[nltk, scikit-learn]20612:7scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}time baseline better,memory variant better,[nltk, scikit-learn]20612:8, 20612:15, 20612:16, 20612:23, 20612:24, 20612:31, 20612:32scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' nltk.tokenize.word_tokenize', ' nltk.download', ' nltk.stem.wordnet.WordNetLemmatizer', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.TfidfTransformer', ' sklearn.ensemble.ExtraTreesClassifier', ' nltk.corpus.stopwords.words', ' sklearn.metrics.make_scorer', ' sklearn.model_selection.GridSearchCV'}time variant better,[nltk, scikit-learn]20612:17, 20612:25, 20612:28, 20612:29, 20612:30scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.TreebankWordTokenizer', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' nltk.tokenize.WordPunctTokenizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.WhitespaceTokenizer', ' nltk.tokenize.RegexpTokenizer'}score inconsistent[nltk, scikit-learn]20614:1, 20614:6, 20614:7, 20614:9, 20614:14, 20614:15, 20614:17, 20614:23, 20614:25, 20614:31scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.TreebankWordTokenizer', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' nltk.tokenize.WordPunctTokenizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.WhitespaceTokenizer', ' nltk.tokenize.RegexpTokenizer'}memory baseline better,score inconsistent[nltk, scikit-learn]20614:2, 20614:3, 20614:10, 20614:11, 20614:18, 20614:19, 20614:26, 20614:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.PorterStemmer', 'sklearn.feature_extraction.text.CountVectorizer', ' nltk.tokenize.TreebankWordTokenizer', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' nltk.tokenize.WordPunctTokenizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.tokenize.WhitespaceTokenizer', ' nltk.tokenize.RegexpTokenizer'}memory variant better,score inconsistent[nltk, scikit-learn]20614:4, 20614:5, 20614:8, 20614:12, 20614:13, 20614:16, 20614:20, 20614:21, 20614:22, 20614:24, 20614:28, 20614:29, 20614:30, 20614:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.21.3Type B
{'spacy.load', ' xgboost.XGBClassifier'}memory baseline better,[spacy, xgboost]20615:4, 20615:5, 20615:6xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'spacy.load', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[spacy, xgboost]20615:7xgboost:0.90Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,score inconsistent[nltk, scikit-learn]20617:1, 20617:9, 20617:25scikit-learn:1.0.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]20617:2, 20617:10, 20617:11, 20617:18, 20617:26, 20617:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}memory baseline better,score inconsistent[nltk, scikit-learn]20617:3, 20617:19scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]20617:4, 20617:5, 20617:6, 20617:12, 20617:13, 20617:14, 20617:20, 20617:21, 20617:22scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]20617:7, 20617:8, 20617:15, 20617:16, 20617:23, 20617:24, 20617:31, 20617:32scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}score inconsistent[nltk, scikit-learn]20617:17, 20617:28, 20617:29, 20617:30scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}score inconsistent[nltk, scikit-learn]20628:1, 20628:7, 20628:15, 20628:17, 20628:23, 20628:25scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}memory baseline better,score inconsistent[nltk, scikit-learn]20628:2, 20628:3, 20628:10, 20628:11, 20628:18, 20628:19, 20628:26scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}memory variant better,score inconsistent[nltk, scikit-learn]20628:4, 20628:5, 20628:8, 20628:12, 20628:13, 20628:16, 20628:20, 20628:21, 20628:24scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]20628:6, 20628:14, 20628:22scikit-learn:0.21.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,score inconsistent[nltk, scikit-learn]20628:9scikit-learn:1.0.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]20628:27scikit-learn:0.23.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]20628:28, 20628:29, 20628:30, 20628:31, 20628:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time baseline better,score inconsistent[nltk, scikit-learn]20631:1, 20631:7, 20631:15, 20631:17, 20631:23scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]20631:2, 20631:3, 20631:18, 20631:19, 20631:26, 20631:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]20631:4, 20631:20, 20631:31, 20631:32scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}memory variant better,score inconsistent[nltk, scikit-learn]20631:5, 20631:6, 20631:12, 20631:13, 20631:14, 20631:28, 20631:30scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.22.1Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]20631:8, 20631:16, 20631:21, 20631:22, 20631:24, 20631:29scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.21.3Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}time variant better,score inconsistent[nltk, scikit-learn]20631:9scikit-learn:1.0.1Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}memory baseline better,score inconsistent[nltk, scikit-learn]20631:10, 20631:11scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.pipeline.Pipeline', ' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', 'sklearn.model_selection.GridSearchCV', ' nltk.tokenize.RegexpTokenizer'}score inconsistent[nltk, scikit-learn]20631:25scikit-learn:1.0.1Type B
{'spacy.load', ' sklearn.svm.LinearSVC', ' sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, spacy]20661:2, 20661:3spacy:3.0.6Type B
{'spacy.load', ' sklearn.svm.LinearSVC', ' sklearn.model_selection.train_test_split'}memory variant better,[scikit-learn, spacy]20661:8spacy:3.0.6Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}time baseline better,score inconsistent[nltk, scikit-learn]20665:1, 20665:7scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}memory baseline better,score inconsistent[nltk, scikit-learn]20665:2, 20665:19scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]20665:3, 20665:10, 20665:11, 20665:18scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]20665:4, 20665:12, 20665:16, 20665:22scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.21.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}memory variant better,score inconsistent[nltk, scikit-learn]20665:5, 20665:8, 20665:13, 20665:20, 20665:21, 20665:28scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.22.1Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}score inconsistent[nltk, scikit-learn]20665:6, 20665:9, 20665:15, 20665:17, 20665:23, 20665:25, 20665:31scikit-learn:0.21.3, scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}time variant better,score inconsistent[nltk, scikit-learn]20665:14scikit-learn:0.21.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]20665:24, 20665:29, 20665:30, 20665:32scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.21.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.naive_bayes.MultinomialNB', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' nltk.tokenize.RegexpTokenizer'}time baseline better,memory baseline better,score inconsistent[nltk, scikit-learn]20665:26, 20665:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[nltk, scikit-learn]20669:1scikit-learn:1.0.1Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[nltk, scikit-learn]20669:2, 20669:3, 20669:11, 20669:18, 20669:26, 20669:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}time variant better,score inconsistent[nltk, scikit-learn]20669:4scikit-learn:0.22.1Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}score inconsistent[nltk, scikit-learn]20669:5, 20669:9, 20669:12, 20669:13, 20669:15, 20669:17, 20669:23, 20669:25scikit-learn:0.22, scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.20.3Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[nltk, scikit-learn]20669:6, 20669:22, 20669:24, 20669:28, 20669:31scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.20.3Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[nltk, scikit-learn]20669:7, 20669:10, 20669:19scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[nltk, scikit-learn]20669:8, 20669:14, 20669:16, 20669:29, 20669:30, 20669:32scikit-learn:0.19.2, scikit-learn:0.21.3, scikit-learn:0.22Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.naive_bayes.MultinomialNB', ' nltk.corpus.stopwords.words', ' nltk.stem.SnowballStemmer', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[nltk, scikit-learn]20669:20, 20669:21scikit-learn:0.22.1, scikit-learn:0.22Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}time variant better,memory baseline better,[scikit-learn, xgboost]20683:1, 20683:2, 20683:8, 20683:9, 20683:12, 20683:15, 20683:16, 20683:19, 20683:22, 20683:23, 20683:29, 20683:30, 20683:36, 20683:37, 20683:43, 20683:44xgboost:1.5.1, xgboost:1.4.2, xgboost:1.1.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}time baseline better,[scikit-learn, xgboost]20683:3xgboost:1.3.3Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}time baseline better,memory variant better,[scikit-learn, xgboost]20683:4, 20683:6, 20683:24, 20683:25, 20683:27, 20683:31, 20683:32, 20683:34, 20683:38, 20683:39, 20683:40, 20683:41, 20683:45, 20683:48, 20683:52, 20683:53, 20683:55xgboost:1.2.1, xgboost:1.0.2, xgboost:1.3.3, xgboost:1.1.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}time variant better,memory variant better,[scikit-learn, xgboost]20683:5, 20683:26, 20683:33, 20683:35, 20683:47, 20683:49, 20683:54xgboost:1.1.1, xgboost:0.90Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}memory variant better,[scikit-learn, xgboost]20683:7, 20683:28, 20683:42, 20683:46, 20683:56xgboost:0.90, xgboost:1.2.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}time baseline better,memory baseline better,[scikit-learn, xgboost]20683:10, 20683:11, 20683:13, 20683:17, 20683:18, 20683:20, 20683:21xgboost:1.3.3, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}memory baseline better,[scikit-learn, xgboost]20683:14xgboost:0.90Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' xgboost.XGBClassifier', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' sklearn.linear_model.LogisticRegression', ' sklearn.naive_bayes.MultinomialNB'}time variant better,[scikit-learn, xgboost]20683:50, 20683:51xgboost:1.5.1, xgboost:1.4.2Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}time variant better,memory baseline better,[scikit-learn, tensorflow]20684:9, 20684:11, 20684:12, 20684:13, 20684:14, 20684:15, 20684:20, 20684:21, 20684:23, 20684:25, 20684:26, 20684:27, 20684:29, 20684:30, 20684:32, 20684:55tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}memory baseline better,[scikit-learn, tensorflow]20684:10, 20684:16, 20684:17, 20684:18, 20684:19, 20684:22, 20684:28, 20684:31, 20684:49, 20684:50, 20684:52, 20684:56tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}time baseline better,memory baseline better,[scikit-learn, tensorflow]20684:24, 20684:51, 20684:53tensorflow:2.3.1, tensorflow:2.0.0Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]20684:33, 20684:34, 20684:35, 20684:37, 20684:38, 20684:39, 20684:40tensorflow:2.1.0Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}memory baseline better,score inconsistent[scikit-learn, tensorflow]20684:36tensorflow:2.1.0Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}memory variant better,score inconsistent[scikit-learn, tensorflow]20684:41, 20684:42, 20684:43, 20684:44, 20684:45, 20684:47, 20684:48, 20684:57, 20684:58, 20684:60, 20684:61, 20684:62, 20684:63, 20684:64, 20684:66, 20684:68, 20684:69, 20684:70, 20684:72tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{' sklearn.model_selection.ShuffleSplit', ' sklearn.feature_selection.SelectKBest', ' sklearn.metrics.f1_score', ' sklearn.feature_extraction.text.TfidfVectorizer', ' sklearn.model_selection.cross_val_score', ' tensorflow.python.keras.models.Sequential', ' sklearn.linear_model.LogisticRegression', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' tensorflow.keras.callbacks.EarlyStopping', 'tensorflow.python.keras.layers.Dropout', ' tensorflow.keras.optimizers.Adam', ' tensorflow.python.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[scikit-learn, tensorflow]20684:46, 20684:59, 20684:65, 20684:67, 20684:71tensorflow:1.15.2, tensorflow:1.14.0, tensorflow:1.13.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}memory baseline better,[nltk, scikit-learn]20687:2, 20687:3, 20687:6, 20687:7, 20687:8, 20687:10, 20687:11, 20687:14, 20687:15, 20687:16, 20687:18, 20687:19, 20687:22, 20687:23, 20687:24, 20687:26, 20687:30, 20687:31scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}memory variant better,[nltk, scikit-learn]20687:4, 20687:5, 20687:12, 20687:13, 20687:20, 20687:21, 20687:25, 20687:28, 20687:29scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:1.0.1Type B
{'sklearn.feature_extraction.text.CountVectorizer', ' sklearn.model_selection.train_test_split', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', ' sklearn.metrics.confusion_matrix', ' nltk.stem.snowball.SnowballStemmer'}time baseline better,memory baseline better,[nltk, scikit-learn]20687:32scikit-learn:0.19.2Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.naive_bayes.GaussianNB', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', 'sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.neighbors.KNeighborsClassifier'}time baseline better,memory baseline better,[nltk, scikit-learn, xgboost]20694:1, 20694:3, 20694:6, 20694:7, 20694:8, 20694:9, 20694:11, 20694:13, 20694:14, 20694:15, 20694:17, 20694:19, 20694:26, 20694:27, 20694:28, 20694:29, 20694:32, 20694:33, 20694:35xgboost:1.5.1, xgboost:1.3.3, xgboost:1.0.2, xgboost:0.90, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.naive_bayes.GaussianNB', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', 'sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.neighbors.KNeighborsClassifier'}memory baseline better,[nltk, scikit-learn, xgboost]20694:2, 20694:4, 20694:5, 20694:10, 20694:12, 20694:16, 20694:18, 20694:20, 20694:21, 20694:22, 20694:23, 20694:24, 20694:25, 20694:31, 20694:34xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.3.3, xgboost:1.0.2, xgboost:0.90, xgboost:1.5.1Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.naive_bayes.GaussianNB', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', 'sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.neighbors.KNeighborsClassifier'}time variant better,memory baseline better,[nltk, scikit-learn, xgboost]20694:30xgboost:1.4.2Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.naive_bayes.GaussianNB', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', 'sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.neighbors.KNeighborsClassifier'}time baseline better,memory variant better,[nltk, scikit-learn, xgboost]20694:36, 20694:37, 20694:38, 20694:39, 20694:40, 20694:55xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.naive_bayes.GaussianNB', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', 'sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.neighbors.KNeighborsClassifier'}memory variant better,[nltk, scikit-learn, xgboost]20694:41, 20694:42, 20694:43, 20694:44, 20694:45, 20694:46, 20694:47, 20694:48, 20694:49, 20694:51, 20694:52, 20694:53, 20694:54, 20694:56xgboost:1.0.2, xgboost:0.90, xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.ensemble.GradientBoostingClassifier', ' sklearn.linear_model.LogisticRegression', ' sklearn.tree.DecisionTreeClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.feature_extraction.text.CountVectorizer', ' sklearn.naive_bayes.GaussianNB', ' sklearn.naive_bayes.MultinomialNB', ' nltk.stem.porter.PorterStemmer', ' nltk.corpus.stopwords.words', 'sklearn.ensemble.VotingClassifier', ' sklearn.metrics.confusion_matrix', ' sklearn.neighbors.KNeighborsClassifier'}time variant better,memory variant better,[nltk, scikit-learn, xgboost]20694:50xgboost:1.5.1Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.stem.porter.PorterStemmer', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' sklearn.linear_model.RidgeClassifier'}time variant better,memory baseline better,[nltk, scikit-learn]20706:2scikit-learn:0.24.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.stem.porter.PorterStemmer', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' sklearn.linear_model.RidgeClassifier'}memory baseline better,[nltk, scikit-learn]20706:3, 20706:10, 20706:11, 20706:18, 20706:19, 20706:26, 20706:27scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.stem.porter.PorterStemmer', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' sklearn.linear_model.RidgeClassifier'}time variant better,[nltk, scikit-learn]20706:4, 20706:5scikit-learn:0.22.1, scikit-learn:0.22Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.stem.porter.PorterStemmer', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' sklearn.linear_model.RidgeClassifier'}memory variant better,[nltk, scikit-learn]20706:6, 20706:8, 20706:13, 20706:14, 20706:16, 20706:22, 20706:24, 20706:28, 20706:30, 20706:31scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.20.3Type B
{' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.stem.porter.PorterStemmer', 'sklearn.model_selection.cross_val_score', ' nltk.corpus.stopwords.words', ' sklearn.linear_model.RidgeClassifier'}time baseline better,memory variant better,[nltk, scikit-learn]20706:20, 20706:21, 20706:29, 20706:32scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}memory baseline better,[opencv-python, scikit-learn]20936:1, 20936:5, 20936:7, 20936:9, 20936:19scikit-learn:0.24.2Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}memory variant better,[opencv-python, scikit-learn]20936:2, 20936:12, 20936:16, 20936:18, 20936:20scikit-learn:1.0.1Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[opencv-python, scikit-learn]20936:3, 20936:11, 20936:13scikit-learn:0.24.2Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[opencv-python, scikit-learn]20936:4scikit-learn:1.0.1Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,[opencv-python, scikit-learn]20936:6scikit-learn:1.0.1Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[opencv-python, scikit-learn]20936:8, 20936:10, 20936:14scikit-learn:1.0.1Type B
{'cv2.imread', ' sklearn.metrics.roc_auc_score', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[opencv-python, scikit-learn]20936:15, 20936:17scikit-learn:0.24.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[opencv-python, scikit-learn]20986:2, 20986:3, 20986:35, 20986:42scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,score inconsistent[opencv-python, scikit-learn]20986:4, 20986:8, 20986:37, 20986:44, 20986:45, 20986:48scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.22Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[opencv-python, scikit-learn]20986:5, 20986:36scikit-learn:0.22, scikit-learn:0.22.1Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[opencv-python, scikit-learn]20986:6, 20986:7, 20986:9, 20986:31, 20986:39, 20986:46, 20986:47, 20986:49scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[opencv-python, scikit-learn]20986:10, 20986:19, 20986:27, 20986:58, 20986:66, 20986:75scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory baseline better,score inconsistent[opencv-python, scikit-learn]20986:11, 20986:18, 20986:26, 20986:34, 20986:59, 20986:74scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,[opencv-python, scikit-learn]20986:12, 20986:32, 20986:64, 20986:68, 20986:69, 20986:76scikit-learn:0.22.1, scikit-learn:0.19.2, scikit-learn:0.22Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,memory variant better,score inconsistent[opencv-python, scikit-learn]20986:13, 20986:20, 20986:21, 20986:24, 20986:28, 20986:52, 20986:53, 20986:56, 20986:60, 20986:61, 20986:72, 20986:77, 20986:80scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.19.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[opencv-python, scikit-learn]20986:14, 20986:15, 20986:17, 20986:22, 20986:23, 20986:54, 20986:55, 20986:57, 20986:70, 20986:71, 20986:73, 20986:79scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}memory variant better,score inconsistent[opencv-python, scikit-learn]20986:16, 20986:40scikit-learn:0.19.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time variant better,[opencv-python, scikit-learn]20986:25, 20986:62, 20986:63, 20986:65, 20986:78scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,[opencv-python, scikit-learn]20986:33scikit-learn:1.0.1Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}score inconsistent[opencv-python, scikit-learn]20986:38scikit-learn:0.21.3Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,score inconsistent[opencv-python, scikit-learn]20986:43, 20986:50, 20986:51scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}memory baseline better,[opencv-python, scikit-learn]20988:2, 20988:3, 20988:10, 20988:11, 20988:18, 20988:19, 20988:27scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{'cv2.imread', ' cv2.resize', ' sklearn.model_selection.train_test_split'}memory baseline better,score inconsistent[opencv-python, scikit-learn]20988:26scikit-learn:0.24.2Type B
{' tensorflow.config.list_physical_devices', ' tensorflow.random.set_seed', ' tensorflow.keras.layers.Input', ' transformers.XLMRobertaConfig.from_pretrained', 'tensorflow.config.experimental.set_memory_growth', ' tensorflow.data.Dataset.from_tensor_slices', ' tensorflow.keras.initializers.GlorotNormal', ' tensorflow.keras.callbacks.ModelCheckpoint', ' transformers.AutoTokenizer.from_pretrained', ' transformers.TFXLMRobertaModel.from_pretrained', ' tensorflow.keras.initializers.constant', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.distribute.get_strategy', ' tensorflow.keras.layers.GlobalAvgPool1D', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.Model'}time baseline better,[tensorflow, transformers]21243:8transformers:2.10.0Type B
{' pytorch_tabnet.tab_model.TabNetRegressor', 'xgboost.XGBRegressor'}time baseline better,memory baseline better,score inconsistent[pytorch_tabnet, xgboost]24013:2, 24013:8, 24013:9, 24013:15xgboost:1.4.2, xgboost:1.5.1Type B
{' pytorch_tabnet.tab_model.TabNetRegressor', 'xgboost.XGBRegressor'}score inconsistent[pytorch_tabnet, xgboost]24013:3, 24013:4, 24013:5, 24013:10, 24013:11, 24013:18, 24013:19xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{' pytorch_tabnet.tab_model.TabNetRegressor', 'xgboost.XGBRegressor'}time variant better,memory variant better,[pytorch_tabnet, xgboost]24013:7, 24013:14, 24013:21xgboost:0.90Type B
{' pytorch_tabnet.tab_model.TabNetRegressor', 'xgboost.XGBRegressor'}time baseline better,score inconsistent[pytorch_tabnet, xgboost]24013:12xgboost:1.1.1Type B
{' pytorch_tabnet.tab_model.TabNetRegressor', 'xgboost.XGBRegressor'}memory baseline better,score inconsistent[pytorch_tabnet, xgboost]24013:16xgboost:1.4.2Type B
{' pytorch_tabnet.tab_model.TabNetRegressor', 'xgboost.XGBRegressor'}time variant better,score inconsistent[pytorch_tabnet, xgboost]24013:17xgboost:1.3.3Type B
{' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}memory baseline better,[scikit-learn, xgboost]24046:2xgboost:1.4.2Type B
{' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}memory variant better,[scikit-learn, xgboost]24046:5xgboost:1.1.1Type B
{' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}time variant better,score inconsistent[scikit-learn, xgboost]24046:7xgboost:0.90Type B
{' xgboost.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.GridSearchCV'}memory variant better,[scikit-learn, xgboost]24069:2, 24069:3, 24069:8, 24069:9, 24069:10, 24069:15, 24069:16, 24069:17, 24069:22, 24069:23, 24069:24, 24069:29, 24069:30, 24069:31xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{' xgboost.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.GridSearchCV'}memory baseline better,[scikit-learn, xgboost]24069:4, 24069:11, 24069:18, 24069:25, 24069:32xgboost:1.2.1Type B
{' xgboost.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.GridSearchCV'}time baseline better,memory baseline better,[scikit-learn, xgboost]24069:5, 24069:6, 24069:12, 24069:13, 24069:19, 24069:20, 24069:26, 24069:27, 24069:33, 24069:34xgboost:1.1.1, xgboost:1.0.2Type B
{' xgboost.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.GridSearchCV'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]24069:7xgboost:0.90Type B
{' xgboost.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'sklearn.model_selection.GridSearchCV'}time variant better,memory baseline better,[scikit-learn, xgboost]24069:14, 24069:21, 24069:28, 24069:35xgboost:0.90Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}memory variant better,[scikit-learn, xgboost]24090:3, 24090:24, 24090:31xgboost:1.3.3Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,[scikit-learn, xgboost]24090:4, 24090:5, 24090:6, 24090:25, 24090:26, 24090:27, 24090:32, 24090:33, 24090:34xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]24090:7xgboost:0.90Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time variant better,[scikit-learn, xgboost]24090:11, 24090:12, 24090:13, 24090:18, 24090:19, 24090:20xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,[scikit-learn, xgboost]24090:14, 24090:21xgboost:0.90Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,[scikit-learn, xgboost]24090:28, 24090:35xgboost:0.90Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}memory baseline better,[scikit-learn, xgboost]24090:36, 24090:37, 24090:38, 24090:43, 24090:44, 24090:45, 24090:50, 24090:51, 24090:52xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,[scikit-learn, xgboost]24090:39, 24090:40, 24090:41, 24090:46, 24090:47, 24090:48, 24090:53, 24090:54, 24090:55xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,[scikit-learn, xgboost]24090:42, 24090:49, 24090:56xgboost:0.90Type B
{' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.linear_model.Lasso', ' sklearn.ensemble.GradientBoostingRegressor', 'sklearn.model_selection.GridSearchCV', ' sklearn.metrics.mean_absolute_error'}memory baseline better,score inconsistent[scikit-learn, xgboost]24093:2xgboost:1.4.2Type B
{' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.linear_model.Lasso', ' sklearn.ensemble.GradientBoostingRegressor', 'sklearn.model_selection.GridSearchCV', ' sklearn.metrics.mean_absolute_error'}score inconsistent[scikit-learn, xgboost]24093:6xgboost:1.0.2Type B
{' sklearn.tree.DecisionTreeRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.linear_model.LinearRegression', ' xgboost.XGBRegressor', ' sklearn.linear_model.Lasso', ' sklearn.ensemble.GradientBoostingRegressor', 'sklearn.model_selection.GridSearchCV', ' sklearn.metrics.mean_absolute_error'}time baseline better,[scikit-learn, xgboost]24093:7xgboost:0.90Type B
{' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' xgboost.XGBRegressor', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time variant better,memory baseline better,score inconsistent[tensorflow, xgboost]24311:2, 24311:3, 24311:4, 24311:5, 24311:6, 24311:7, 24311:9, 24311:13, 24311:21, 24311:23, 24311:30, 24311:35xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' xgboost.XGBRegressor', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time variant better,score inconsistent[tensorflow, xgboost]24311:8, 24311:10, 24311:11, 24311:12, 24311:14, 24311:15, 24311:16, 24311:17, 24311:18, 24311:19, 24311:20, 24311:24, 24311:26, 24311:28, 24311:32xgboost:1.5.1, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:0.90, xgboost:1.4.2, xgboost:1.0.2Type B
{' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' xgboost.XGBRegressor', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time variant better,memory variant better,score inconsistent[tensorflow, xgboost]24311:22, 24311:25, 24311:27, 24311:29, 24311:31, 24311:33, 24311:34xgboost:1.5.1, xgboost:1.2.1, xgboost:1.0.2, xgboost:1.3.3, xgboost:1.1.1Type B
{' tensorflow.keras.optimizers.SGD', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Dropout', ' xgboost.XGBRegressor', ' tensorflow.keras.Sequential', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,score inconsistent[tensorflow, xgboost]24311:43, 24311:44, 24311:45, 24311:46, 24311:47, 24311:48, 24311:49, 24311:50, 24311:51, 24311:52, 24311:53, 24311:54, 24311:55, 24311:56xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}memory variant better,[scikit-learn, xgboost]24325:1, 24325:2, 24325:3, 24325:8, 24325:9, 24325:10, 24325:15, 24325:16, 24325:17, 24325:22, 24325:23, 24325:24, 24325:29, 24325:30, 24325:31, 24425:9, 24425:10, 24425:15, 24425:16, 24425:17, 24425:22, 24425:23, 24425:24, 24425:29, 24425:30, 24425:31, 24443:2, 24443:3, 24443:8, 24443:9, 24443:10, 24443:15, 24443:16, 24443:17, 24443:22, 24443:23, 24443:24, 24443:29xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}time variant better,memory baseline better,[scikit-learn, xgboost]24325:4, 24325:5, 24325:11, 24325:12, 24325:18, 24325:19, 24325:25, 24325:26, 24325:32, 24325:33, 24325:34, 24425:18, 24425:19, 24425:20, 24425:25, 24425:26, 24425:27, 24425:32, 24425:33, 24425:34, 24443:11, 24443:12, 24443:19, 24443:27xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}memory baseline better,[scikit-learn, xgboost]24325:6, 24325:13, 24325:20, 24325:27, 24425:4, 24425:5, 24425:6, 24425:11, 24425:12, 24443:4, 24443:5, 24443:6, 24443:7, 24443:13, 24443:14, 24443:18, 24443:20, 24443:21, 24443:25, 24443:26, 24443:28, 24443:32, 24443:33xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:0.90Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]24325:7, 24325:14, 24325:21, 24325:28, 24325:35xgboost:0.90Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.preprocessing.LabelEncoder'}time baseline better,score inconsistent[scikit-learn, xgboost]24334:4xgboost:1.2.1Type B
{'sklearn.metrics.mean_squared_error', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.model_selection.train_test_split', ' xgboost.XGBRegressor', ' sklearn.preprocessing.LabelEncoder'}score inconsistent[scikit-learn, xgboost]24334:7xgboost:0.90Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]24335:2, 24335:3, 24335:10, 24335:18, 24335:19, 24335:26, 24335:27scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}time variant better,score inconsistent[catboost, scikit-learn]24335:4, 24335:5, 24335:7, 24335:9, 24335:17, 24335:22, 24335:25, 24335:30, 24335:33, 24335:41scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.21.3Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}score inconsistent[catboost, scikit-learn]24335:6, 24335:14, 24335:15, 24335:38, 24335:46, 24335:65scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:1.0.1Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]24335:8, 24335:12, 24335:13, 24335:16, 24335:23, 24335:28, 24335:29, 24335:31, 24335:32, 24335:44scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}memory baseline better,score inconsistent[catboost, scikit-learn]24335:11, 24335:34, 24335:43, 24335:58scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}memory variant better,score inconsistent[catboost, scikit-learn]24335:20, 24335:21, 24335:24, 24335:36, 24335:39, 24335:40, 24335:47, 24335:52, 24335:55, 24335:69scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]24335:35, 24335:42, 24335:50, 24335:51, 24335:59, 24335:66, 24335:67scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]24335:37, 24335:45, 24335:48, 24335:53, 24335:56, 24335:60, 24335:61, 24335:63, 24335:64, 24335:71, 24335:72scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.20.3Type B
{' sklearn.metrics.r2_score', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor', ' sklearn.metrics.mean_absolute_error'}time baseline better,score inconsistent[catboost, scikit-learn]24335:49, 24335:54, 24335:57, 24335:62, 24335:70scikit-learn:1.0.1, scikit-learn:0.21.3Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}time baseline better,memory variant better,[scikit-learn, xgboost]24425:2, 24425:3, 24425:8, 24443:30, 24443:31xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]24425:7, 24425:14, 24425:21, 24425:28, 24425:35xgboost:0.90Type B
{' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,[scikit-learn, xgboost]24425:13, 24443:34, 24443:35xgboost:1.0.2, xgboost:0.90Type B
{'statsmodels.stats.outliers_influence.variance_inflation_factor', ' xgboost.XGBRegressor'}time baseline better,memory variant better,score inconsistent[statsmodels, xgboost]24431:2, 24431:9, 24431:16, 24431:23, 24431:30xgboost:1.4.2Type B
{'statsmodels.stats.outliers_influence.variance_inflation_factor', ' xgboost.XGBRegressor'}memory baseline better,score inconsistent[statsmodels, xgboost]24431:3, 24431:10, 24431:17, 24431:24, 24431:31xgboost:1.3.3Type B
{'statsmodels.stats.outliers_influence.variance_inflation_factor', ' xgboost.XGBRegressor'}time baseline better,memory baseline better,[statsmodels, xgboost]24431:4, 24431:5, 24431:11, 24431:18, 24431:25, 24431:32xgboost:1.2.1, xgboost:1.1.1Type B
{'statsmodels.stats.outliers_influence.variance_inflation_factor', ' xgboost.XGBRegressor'}time variant better,memory baseline better,score inconsistent[statsmodels, xgboost]24431:7, 24431:14, 24431:21, 24431:28, 24431:35xgboost:0.90Type B
{'statsmodels.stats.outliers_influence.variance_inflation_factor', ' xgboost.XGBRegressor'}time variant better,memory variant better,score inconsistent[statsmodels, xgboost]24431:8, 24431:15, 24431:22, 24431:29xgboost:1.5.1Type B
{'statsmodels.stats.outliers_influence.variance_inflation_factor', ' xgboost.XGBRegressor'}memory baseline better,[statsmodels, xgboost]24431:12, 24431:19, 24431:26, 24431:33xgboost:1.1.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[scikit-learn, xgboost]24511:1, 24511:2, 24511:15, 24511:16, 24511:38, 24511:43, 24511:44xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory variant better,[scikit-learn, xgboost]24511:3, 24511:8, 24511:9, 24511:10, 24511:22, 24511:29, 24511:31, 24511:50, 24533:2, 24533:3, 24533:8, 24533:9, 24533:10, 24533:15, 24533:16, 24533:17, 24533:24, 24533:29, 24533:30, 24533:31, 24533:36, 24533:43, 24533:44, 24533:45xgboost:1.3.3, xgboost:1.5.1, xgboost:1.4.2Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[scikit-learn, xgboost]24511:4, 24511:13, 24511:18, 24511:25, 24511:26, 24511:41, 24511:46, 24533:4, 24533:18, 24533:19, 24533:20, 24533:25, 24533:32, 24533:41, 24533:46, 24533:47, 24533:48, 24533:51, 24533:52, 24533:53, 24533:54, 24533:55xgboost:1.2.1, xgboost:1.0.2, xgboost:1.1.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}memory baseline better,[scikit-learn, xgboost]24511:5, 24511:6, 24511:11, 24511:12, 24511:27, 24511:39, 24511:40, 24511:47, 24511:48, 24533:5, 24533:6, 24533:11, 24533:12, 24533:13, 24533:39, 24533:40xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,memory variant better,[scikit-learn, xgboost]24511:17, 24511:23, 24511:24, 24511:30, 24511:36, 24511:37, 24511:45, 24533:22, 24533:23, 24533:37, 24533:38xgboost:1.3.3, xgboost:1.4.2, xgboost:1.5.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[scikit-learn, xgboost]24511:19, 24511:20, 24511:32, 24511:33, 24511:34, 24511:53, 24511:54, 24511:55, 24533:7, 24533:14, 24533:21, 24533:42, 24533:49, 24533:56xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1, xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time baseline better,[scikit-learn, xgboost]24511:52, 24533:28, 24533:35xgboost:1.3.3, xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' xgboost.XGBClassifier'}time variant better,[scikit-learn, xgboost]24533:26, 24533:27, 24533:33, 24533:50xgboost:1.1.1, xgboost:1.0.2, xgboost:1.5.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', ' category_encoders.CatBoostEncoder', ' sklearn.naive_bayes.GaussianNB', ' sklearn.pipeline.make_pipeline', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory variant better,[category_encoders, scikit-learn]24544:6, 24544:7scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', ' category_encoders.CatBoostEncoder', ' sklearn.naive_bayes.GaussianNB', ' sklearn.pipeline.make_pipeline', 'sklearn.preprocessing.StandardScaler'}time baseline better,[category_encoders, scikit-learn]24544:8, 24544:17scikit-learn:0.23.2, scikit-learn:0.22.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', ' category_encoders.CatBoostEncoder', ' sklearn.naive_bayes.GaussianNB', ' sklearn.pipeline.make_pipeline', 'sklearn.preprocessing.StandardScaler'}time variant better,memory variant better,[category_encoders, scikit-learn]24544:11, 24544:12scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', ' category_encoders.CatBoostEncoder', ' sklearn.naive_bayes.GaussianNB', ' sklearn.pipeline.make_pipeline', 'sklearn.preprocessing.StandardScaler'}time variant better,[category_encoders, scikit-learn]24544:15, 24544:16, 24544:21, 24544:22scikit-learn:1.0.1, scikit-learn:0.22, scikit-learn:0.22.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', ' category_encoders.CatBoostEncoder', ' sklearn.naive_bayes.GaussianNB', ' sklearn.pipeline.make_pipeline', 'sklearn.preprocessing.StandardScaler'}memory baseline better,[category_encoders, scikit-learn]24544:18, 24544:19, 24544:20scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' sklearn.ensemble.GradientBoostingClassifier', ' category_encoders.CatBoostEncoder', ' sklearn.naive_bayes.GaussianNB', ' sklearn.pipeline.make_pipeline', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory baseline better,[category_encoders, scikit-learn]24544:23, 24544:24, 24544:25scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' statsmodels.stats.outliers_influence.variance_inflation_factor'}time variant better,memory baseline better,score inconsistent[catboost, statsmodels]24561:2, 24561:3statsmodels:0.12.2, statsmodels:0.13.1Type B
{'catboost.CatBoostClassifier', ' statsmodels.stats.outliers_influence.variance_inflation_factor'}time variant better,[catboost, statsmodels]24561:5, 24561:6statsmodels:0.12.2, statsmodels:0.13.1Type B
{'catboost.CatBoostClassifier', ' statsmodels.stats.outliers_influence.variance_inflation_factor'}memory variant better,[catboost, statsmodels]24561:9statsmodels:0.13.1Type B
{'catboost.CatBoostClassifier', ' statsmodels.stats.outliers_influence.variance_inflation_factor'}time baseline better,[catboost, statsmodels]24561:10, 24561:11, 24561:13statsmodels:0.11.1, statsmodels:0.12.2Type B
{'catboost.CatBoostClassifier', ' statsmodels.stats.outliers_influence.variance_inflation_factor'}time baseline better,memory variant better,[catboost, statsmodels]24561:12, 24561:15statsmodels:0.13.1Type B
{' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.metrics.confusion_matrix', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory baseline better,[scikit-learn, xgboost]24563:2, 24563:9xgboost:1.4.2Type B
{' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.metrics.confusion_matrix', 'sklearn.preprocessing.MinMaxScaler'}memory variant better,[scikit-learn, xgboost]24563:3, 24563:4, 24563:5xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.metrics.confusion_matrix', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,[scikit-learn, xgboost]24563:6xgboost:1.0.2Type B
{' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.metrics.confusion_matrix', 'sklearn.preprocessing.MinMaxScaler'}time variant better,memory variant better,[scikit-learn, xgboost]24563:7xgboost:0.90Type B
{' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.metrics.confusion_matrix', 'sklearn.preprocessing.MinMaxScaler'}memory baseline better,[scikit-learn, xgboost]24563:8, 24563:10xgboost:1.5.1, xgboost:1.3.3Type B
{' sklearn.compose.ColumnTransformer', ' sklearn.pipeline.Pipeline', ' sklearn.metrics.f1_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.OrdinalEncoder', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.metrics.confusion_matrix', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,[scikit-learn, xgboost]24563:13xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_absolute_error'}memory variant better,score inconsistent[scikit-learn, xgboost]24572:2, 24572:3, 24572:8, 24572:9, 24572:10, 24572:15, 24572:16, 24572:17, 24572:22, 24572:23, 24572:24, 24572:29, 24572:30, 24572:31, 24572:36, 24572:37, 24572:38, 24572:43, 24572:44, 24572:45xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,[scikit-learn, xgboost]24572:4, 24572:5, 24572:6, 24572:11, 24572:12, 24572:13, 24572:18, 24572:19, 24572:20, 24572:25, 24572:26, 24572:27, 24572:32, 24572:33, 24572:34, 24572:39, 24572:40, 24572:41, 24572:46, 24572:47, 24572:48, 24572:53, 24572:54, 24572:55xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]24572:7, 24572:14, 24572:21, 24572:28, 24572:35, 24572:42, 24572:49, 24572:56xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_absolute_error'}score inconsistent[scikit-learn, xgboost]24572:50xgboost:1.5.1Type B
{'sklearn.metrics.roc_auc_score', ' xgboost.XGBClassifier', ' sklearn.model_selection.train_test_split', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.mean_absolute_error'}memory baseline better,score inconsistent[scikit-learn, xgboost]24572:51, 24572:52xgboost:1.4.2, xgboost:1.3.3Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time baseline better,memory variant better,[scikit-learn, xgboost]24588:3, 24588:4, 24588:5, 24588:6, 24588:24, 24588:40xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]24588:7, 24588:28, 24588:34, 24588:35, 24588:42xgboost:0.90, xgboost:1.0.2Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time baseline better,[scikit-learn, xgboost]24588:8, 24588:15, 24588:19xgboost:1.5.1, xgboost:1.1.1Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time variant better,[scikit-learn, xgboost]24588:9, 24588:10, 24588:36, 24588:37, 24588:43xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time baseline better,score inconsistent[scikit-learn, xgboost]24588:11, 24588:12, 24588:16, 24588:17, 24588:29, 24588:30xgboost:1.2.1, xgboost:1.1.1, xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}score inconsistent[scikit-learn, xgboost]24588:13, 24588:22, 24588:23xgboost:1.0.2, xgboost:1.5.1, xgboost:1.4.2Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time variant better,score inconsistent[scikit-learn, xgboost]24588:14, 24588:21xgboost:0.90Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}memory variant better,score inconsistent[scikit-learn, xgboost]24588:25, 24588:27, 24588:31xgboost:1.2.1, xgboost:1.0.2, xgboost:1.3.3Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}memory variant better,[scikit-learn, xgboost]24588:26, 24588:39xgboost:1.1.1, xgboost:1.2.1Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time variant better,memory variant better,[scikit-learn, xgboost]24588:32, 24588:33, 24588:38, 24588:41xgboost:1.2.1, xgboost:1.1.1, xgboost:1.3.3, xgboost:1.0.2Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time baseline better,memory baseline better,[scikit-learn, xgboost]24588:44, 24588:48xgboost:1.4.2, xgboost:1.0.2Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}memory baseline better,[scikit-learn, xgboost]24588:45, 24588:46xgboost:1.3.3, xgboost:1.2.1Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}memory baseline better,score inconsistent[scikit-learn, xgboost]24588:47xgboost:1.1.1Type B
{' sklearn.pipeline.Pipeline', ' xgboost.XGBClassifier', ' sklearn.model_selection.cross_val_score', 'sklearn.compose.ColumnTransformer', ' sklearn.preprocessing.OrdinalEncoder'}time variant better,memory baseline better,score inconsistent[scikit-learn, xgboost]24588:49xgboost:0.90Type B
{' tensorflow.random.set_seed', 'tensorflow.keras.layers.BatchNormalization', ' optuna.create_study', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}memory baseline better,[optuna, tensorflow]24938:10, 24938:14tensorflow:2.4.1Type B
{' tensorflow.random.set_seed', 'tensorflow.keras.layers.BatchNormalization', ' optuna.create_study', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory baseline better,score inconsistent[optuna, tensorflow]24938:11tensorflow:2.4.1Type B
{' tensorflow.random.set_seed', 'tensorflow.keras.layers.BatchNormalization', ' optuna.create_study', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}memory variant better,[optuna, tensorflow]24938:12, 24938:13, 24938:30tensorflow:2.4.1, tensorflow:2.2.0Type B
{' tensorflow.random.set_seed', 'tensorflow.keras.layers.BatchNormalization', ' optuna.create_study', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense'}time baseline better,memory variant better,[optuna, tensorflow]24938:26tensorflow:2.2.0Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}time variant better,score inconsistent[category_encoders, scikit-learn]24953:7, 24953:12, 24953:15, 24953:18, 24953:20, 24953:23, 24953:27, 24953:28, 24953:30scikit-learn:1.0.1Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}time baseline better,memory baseline better,score inconsistent[category_encoders, scikit-learn]24953:8, 24953:22, 24953:29scikit-learn:1.0.1Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}time baseline better,score inconsistent[category_encoders, scikit-learn]24953:9scikit-learn:1.0.1Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}memory variant better,score inconsistent[category_encoders, scikit-learn]24953:10, 24953:26scikit-learn:1.0.1Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}time variant better,memory variant better,score inconsistent[category_encoders, scikit-learn]24953:11, 24953:13, 24953:17, 24953:19, 24953:21, 24953:25scikit-learn:1.0.1Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}memory baseline better,score inconsistent[category_encoders, scikit-learn]24953:14, 24953:24scikit-learn:1.0.1Type B
{' category_encoders.LeaveOneOutEncoder', ' sklearn.metrics.accuracy_score', ' sklearn.model_selection.StratifiedShuffleSplit', 'sklearn.impute.SimpleImputer'}score inconsistent[category_encoders, scikit-learn]24953:16scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]24959:2, 24959:3, 24959:4, 24959:8, 24959:9, 24959:10, 24959:11, 24959:15, 24959:16, 24959:17, 24959:18, 24959:21, 24959:23scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.21.3, scikit-learn:0.22, scikit-learn:0.22.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]24959:5, 24959:6, 24959:12, 24959:13, 24959:19, 24959:20, 24959:42scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time variant better,score inconsistent[catboost, scikit-learn]24959:7, 24959:14scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory variant better,score inconsistent[catboost, scikit-learn]24959:22, 24959:24, 24959:25, 24959:28, 24959:29, 24959:30, 24959:31, 24959:32, 24959:35, 24959:36, 24959:38, 24959:39scikit-learn:0.20.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:1.0.1, scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}memory baseline better,score inconsistent[catboost, scikit-learn]24959:26, 24959:27, 24959:33, 24959:40, 24959:41scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]24959:34, 24959:47, 24959:48, 24959:49, 24959:68, 24959:69, 24959:70, 24959:75, 24959:76scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}score inconsistent[catboost, scikit-learn]24959:37, 24959:77scikit-learn:0.21.3, scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]24959:43, 24959:45, 24959:46, 24959:64, 24959:65, 24959:66, 24959:67, 24959:71, 24959:72, 24959:73, 24959:74scikit-learn:0.20.3, scikit-learn:0.22, scikit-learn:0.22.1, scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,score inconsistent[catboost, scikit-learn]24959:44scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory variant better,[catboost, scikit-learn]24959:50, 24959:52, 24959:53, 24959:57, 24959:59, 24959:60scikit-learn:0.20.3, scikit-learn:0.22, scikit-learn:0.22.1Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,[catboost, scikit-learn]24959:51, 24959:58scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score'}time baseline better,memory baseline better,[catboost, scikit-learn]24959:54, 24959:55, 24959:56, 24959:61, 24959:62, 24959:63scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}time baseline better,memory variant better,score inconsistent[category_encoders, imbalanced-learn]24960:1, 24960:2imbalanced-learn:0.8.1, imbalanced-learn:0.7.0Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}time variant better,memory variant better,score inconsistent[category_encoders, imbalanced-learn]24960:3imbalanced-learn:0.6.2Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}score inconsistent[category_encoders, imbalanced-learn]24960:7, 24960:9, 24960:13, 24960:14, 24960:15imbalanced-learn:0.8.1, imbalanced-learn:0.6.2, imbalanced-learn:0.7.0Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}time variant better,score inconsistent[category_encoders, imbalanced-learn]24960:8imbalanced-learn:0.7.0Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}memory baseline better,score inconsistent[category_encoders, imbalanced-learn]24960:19, 24960:25imbalanced-learn:0.8.1Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}time baseline better,memory baseline better,score inconsistent[category_encoders, imbalanced-learn]24960:20, 24960:21, 24960:26imbalanced-learn:0.7.0, imbalanced-learn:0.6.2Type B
{' imblearn.pipeline.make_pipeline', 'category_encoders.TargetEncoder'}time variant better,memory baseline better,score inconsistent[category_encoders, imbalanced-learn]24960:27imbalanced-learn:0.6.2Type B
{' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory baseline better,[scikit-learn, xgboost]24969:1, 24969:2, 24969:9, 24969:11, 24969:12, 24969:13xgboost:1.5.1, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory variant better,[scikit-learn, xgboost]24969:3xgboost:1.3.3Type B
{' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}memory variant better,[scikit-learn, xgboost]24969:4, 24969:5, 24969:6xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]24969:7xgboost:0.90Type B
{' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}memory baseline better,[scikit-learn, xgboost]24969:8, 24969:10xgboost:1.5.1, xgboost:1.3.3Type B
{' xgboost.XGBClassifier', ' sklearn.preprocessing.OneHotEncoder', ' sklearn.model_selection.train_test_split', 'sklearn.preprocessing.StandardScaler'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]24969:14xgboost:0.90Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.metrics.classification_report', ' sklearn.model_selection.KFold', ' sklearn.metrics.f1_score', ' sklearn.model_selection.StratifiedKFold', ' imblearn.over_sampling.SMOTE', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.GridSearchCV'}time variant better,memory baseline better,score inconsistent[imbalanced-learn, scikit-learn]25002:1, 25002:2, 25002:4, 25002:6scikit-learn:0.24.2, scikit-learn:1.0.1Type B
{'sklearn.metrics.roc_auc_score', ' sklearn.metrics.classification_report', ' sklearn.model_selection.KFold', ' sklearn.metrics.f1_score', ' sklearn.model_selection.StratifiedKFold', ' imblearn.over_sampling.SMOTE', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', ' sklearn.model_selection.GridSearchCV'}time variant better,score inconsistent[imbalanced-learn, scikit-learn]25002:3, 25002:5scikit-learn:0.24.2Type B
{' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.auc', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', 'bayes_opt.BayesianOptimization', ' sklearn.metrics.classification_report'}time baseline better,memory variant better,score inconsistent[bayesian-optimization, scikit-learn]25004:4scikit-learn:1.0.1Type B
{' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.auc', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', 'bayes_opt.BayesianOptimization', ' sklearn.metrics.classification_report'}memory baseline better,[bayesian-optimization, scikit-learn]25004:5, 25004:13, 25004:19scikit-learn:1.0.1Type B
{' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.auc', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', 'bayes_opt.BayesianOptimization', ' sklearn.metrics.classification_report'}time variant better,memory baseline better,[bayesian-optimization, scikit-learn]25004:6, 25004:12, 25004:20scikit-learn:1.0.1Type B
{' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.auc', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', 'bayes_opt.BayesianOptimization', ' sklearn.metrics.classification_report'}time variant better,memory variant better,score inconsistent[bayesian-optimization, scikit-learn]25004:11scikit-learn:1.0.1Type B
{' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.auc', ' sklearn.metrics.recall_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', 'bayes_opt.BayesianOptimization', ' sklearn.metrics.classification_report'}memory variant better,score inconsistent[bayesian-optimization, scikit-learn]25004:18scikit-learn:1.0.1Type B
{' sklearn.impute.SimpleImputer', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.confusion_matrix', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.accuracy_score', ' sklearn.metrics.roc_auc_score', ' sklearn.metrics.roc_curve', ' sklearn.preprocessing.LabelEncoder', 'bayes_opt.BayesianOptimization', ' sklearn.metrics.classification_report'}time variant better,memory variant better,score inconsistent[bayesian-optimization, scikit-learn]25022:4, 25022:11, 25022:18scikit-learn:1.0.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}memory baseline better,score inconsistent[optuna, xgboost]25080:2, 25080:29xgboost:1.4.2, xgboost:1.5.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time variant better,memory baseline better,[optuna, xgboost]25080:3, 25115:36xgboost:1.3.3, xgboost:1.5.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time variant better,memory variant better,[optuna, xgboost]25080:4, 25080:17, 25080:24, 25080:31, 25080:52, 25080:54, 25115:5, 25115:10, 25115:11, 25115:17, 25115:18, 25115:32, 25115:33, 25115:38, 25115:39, 25115:40, 25115:45, 25115:46, 25115:52, 25115:53xgboost:1.2.1, xgboost:1.3.3, xgboost:1.1.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time variant better,memory variant better,score inconsistent[optuna, xgboost]25080:5, 25080:10, 25080:11, 25080:47, 25080:49, 25115:26, 25115:47xgboost:1.1.1, xgboost:1.3.3, xgboost:1.2.1, xgboost:0.90Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time baseline better,memory variant better,[optuna, xgboost]25080:6, 25080:13, 25080:20, 25115:6, 25115:7, 25115:13, 25115:14, 25115:20, 25115:25, 25115:27, 25115:34, 25115:41, 25115:42, 25115:48, 25115:49xgboost:1.0.2, xgboost:0.90, xgboost:1.2.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time baseline better,memory variant better,score inconsistent[optuna, xgboost]25080:7, 25080:21, 25080:28, 25080:35, 25080:42, 25080:55, 25080:56, 25115:4xgboost:0.90, xgboost:1.0.2, xgboost:1.2.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}score inconsistent[optuna, xgboost]25080:8, 25080:22, 25080:27, 25080:32, 25080:36, 25080:39, 25080:40, 25080:41xgboost:1.5.1, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}memory variant better,[optuna, xgboost]25080:14, 25080:48, 25115:3, 25115:12, 25115:19, 25115:21, 25115:28, 25115:35, 25115:55, 25115:56xgboost:0.90, xgboost:1.0.2, xgboost:1.3.3, xgboost:1.1.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time variant better,[optuna, xgboost]25080:16, 25080:23, 25080:26, 25080:37, 25115:24, 25115:31xgboost:1.4.2, xgboost:1.1.1, xgboost:1.3.3Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time variant better,score inconsistent[optuna, xgboost]25080:18, 25080:43, 25080:44, 25080:50, 25080:51xgboost:1.2.1, xgboost:1.5.1, xgboost:1.4.2Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}memory variant better,score inconsistent[optuna, xgboost]25080:19, 25115:54xgboost:1.1.1Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time variant better,memory baseline better,score inconsistent[optuna, xgboost]25080:30xgboost:1.4.2Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time baseline better,[optuna, xgboost]25080:34xgboost:1.0.2Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time baseline better,memory baseline better,score inconsistent[optuna, xgboost]25080:38xgboost:1.3.3Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}memory baseline better,[optuna, xgboost]25080:45, 25115:8, 25115:15, 25115:22, 25115:23, 25115:29, 25115:43, 25115:50, 25115:51xgboost:1.3.3, xgboost:1.5.1, xgboost:1.4.2Type B
{'xgboost.XGBClassifier', ' optuna.create_study'}time baseline better,memory baseline better,[optuna, xgboost]25080:53, 25115:2, 25115:9, 25115:16, 25115:30, 25115:37, 25115:44xgboost:1.2.1, xgboost:1.4.2Type B
{'catboost.CatBoostClassifier', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.log_loss'}score inconsistent[catboost, scikit-learn]25112:6scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.model_selection.StratifiedKFold', ' sklearn.metrics.log_loss'}time baseline better,score inconsistent[catboost, scikit-learn]25112:7, 25112:8scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}memory baseline better,score inconsistent[catboost, scikit-learn]25145:2, 25145:3, 25145:6, 25145:10, 25145:11, 25145:18, 25145:19, 25145:26, 25145:27, 25145:35, 25145:42, 25145:43, 25145:50, 25145:51, 25145:58, 25145:59, 25145:66, 25145:67scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}score inconsistent[catboost, scikit-learn]25145:4, 25145:5, 25145:15, 25145:17, 25145:22, 25145:23, 25145:25, 25145:30, 25145:31, 25145:38, 25145:39scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.20.3, scikit-learn:1.0.1, scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]25145:7scikit-learn:0.20.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}memory variant better,score inconsistent[catboost, scikit-learn]25145:8, 25145:16, 25145:21, 25145:24, 25145:28, 25145:29, 25145:32, 25145:36, 25145:37, 25145:40, 25145:44, 25145:45, 25145:52, 25145:53, 25145:60, 25145:61, 25145:68, 25145:69scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.22.1Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}time baseline better,score inconsistent[catboost, scikit-learn]25145:9, 25145:41, 25145:49, 25145:57, 25145:65scikit-learn:1.0.1Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]25145:12, 25145:13, 25145:20scikit-learn:0.22.1, scikit-learn:0.22Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}time variant better,score inconsistent[catboost, scikit-learn]25145:14scikit-learn:0.21.3Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}memory baseline better,[catboost, scikit-learn]25145:34scikit-learn:0.24.2Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}memory variant better,[catboost, scikit-learn]25145:48, 25145:56, 25145:64, 25145:72scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' xgboost.sklearn.XGBClassifier'}time variant better,memory variant better,score inconsistent[catboost, xgboost]25154:2, 25154:3, 25154:8, 25154:9, 25154:10, 25154:16, 25154:23, 25154:24, 25154:29, 25154:31xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{'catboost.CatBoostClassifier', ' xgboost.sklearn.XGBClassifier'}time variant better,memory baseline better,score inconsistent[catboost, xgboost]25154:4, 25154:5, 25154:6, 25154:11, 25154:12, 25154:13, 25154:18, 25154:19, 25154:20, 25154:25, 25154:26, 25154:27, 25154:32, 25154:33, 25154:39, 25154:40, 25154:41xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2Type B
{'catboost.CatBoostClassifier', ' xgboost.sklearn.XGBClassifier'}time baseline better,memory baseline better,score inconsistent[catboost, xgboost]25154:7, 25154:21, 25154:35, 25154:42, 25154:47, 25154:53, 25154:56, 25154:61, 25154:62, 25154:63, 25154:67, 25154:68, 25154:69, 25154:70xgboost:0.90, xgboost:1.1.1, xgboost:1.2.1, xgboost:1.0.2Type B
{'catboost.CatBoostClassifier', ' xgboost.sklearn.XGBClassifier'}memory baseline better,score inconsistent[catboost, xgboost]25154:14, 25154:34, 25154:46, 25154:48, 25154:54xgboost:0.90, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type B
{'catboost.CatBoostClassifier', ' xgboost.sklearn.XGBClassifier'}memory variant better,score inconsistent[catboost, xgboost]25154:22, 25154:30, 25154:38, 25154:43, 25154:45, 25154:50, 25154:51xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'catboost.CatBoostClassifier', ' xgboost.sklearn.XGBClassifier'}time baseline better,memory variant better,score inconsistent[catboost, xgboost]25154:44, 25154:52, 25154:57, 25154:58, 25154:64, 25154:65, 25154:66xgboost:1.4.2, xgboost:1.3.3, xgboost:1.5.1Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}memory baseline better,score inconsistent[optuna, xgboost]25327:2, 25327:51xgboost:1.4.2Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}memory variant better,[optuna, xgboost]25327:3, 25327:13, 25327:18, 25327:20, 25327:24, 25327:33, 25327:34, 25327:41, 25327:48xgboost:1.3.3, xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}memory variant better,score inconsistent[optuna, xgboost]25327:4, 25327:6, 25327:12, 25327:26, 25327:27, 25327:32, 25327:55xgboost:1.2.1, xgboost:1.0.2, xgboost:1.1.1Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time variant better,memory variant better,score inconsistent[optuna, xgboost]25327:5, 25327:25, 25327:38, 25327:39, 25327:47, 25327:52, 25327:53, 25327:54xgboost:1.1.1, xgboost:1.2.1, xgboost:1.3.3Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time baseline better,memory variant better,score inconsistent[optuna, xgboost]25327:7, 25327:14, 25327:28, 25327:42, 25327:56xgboost:0.90Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time variant better,memory baseline better,score inconsistent[optuna, xgboost]25327:8, 25327:15, 25327:16, 25327:22, 25327:36, 25327:43, 25327:50xgboost:1.5.1, xgboost:1.4.2Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}memory baseline better,[optuna, xgboost]25327:9, 25327:30xgboost:1.4.2Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time variant better,memory variant better,[optuna, xgboost]25327:10, 25327:11, 25327:19, 25327:31, 25327:40, 25327:45, 25327:46xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time variant better,score inconsistent[optuna, xgboost]25327:17xgboost:1.3.3Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time baseline better,memory variant better,[optuna, xgboost]25327:21, 25327:35, 25327:49xgboost:0.90Type B
{' optuna.visualization.plot_slice', ' optuna.create_study', ' optuna.visualization.plot_param_importances', ' optuna.visualization.plot_optimization_history', ' optuna.visualization.plot_edf', ' optuna.visualization.plot_parallel_coordinate', ' optuna.visualization.plot_contour', 'xgboost.XGBClassifier'}time variant better,memory baseline better,[optuna, xgboost]25327:23, 25327:29, 25327:37, 25327:44xgboost:1.4.2, xgboost:1.5.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time variant better,memory baseline better,[catboost, xgboost]25354:5, 25354:6, 25354:12, 25354:26, 25354:27, 25354:32, 25354:40, 25354:47, 25354:54, 25354:61, 25354:68xgboost:1.1.1, xgboost:1.0.2, xgboost:1.2.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}memory baseline better,[catboost, xgboost]25354:13, 25354:18, 25354:20, 25354:25, 25354:33, 25354:34, 25354:39, 25354:41, 25354:46, 25354:48, 25354:67, 25354:69xgboost:1.0.2, xgboost:1.2.1, xgboost:1.1.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time baseline better,memory variant better,[catboost, xgboost]25354:15, 25354:22, 25354:29, 25354:36, 25354:43, 25354:50, 25354:64xgboost:1.5.1Type B
{'catboost.CatBoostClassifier', ' xgboost.XGBClassifier'}time baseline better,memory baseline better,[catboost, xgboost]25354:53, 25354:60, 25354:62xgboost:1.2.1, xgboost:1.0.2Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}score inconsistent[tensorflow, tensorflow_addons]25386:1, 25386:2, 25386:3, 25386:4, 25386:5, 25386:19, 25386:20, 25386:22, 25386:25, 25386:26, 25386:33tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1, tensorflow_addons:0.11.2, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3, tensorflow_addons:0.10.0Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}memory baseline better,score inconsistent[tensorflow, tensorflow_addons]25386:6, 25386:7, 25386:8tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}time baseline better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]25386:10, 25386:11, 25386:12, 25386:13tensorflow_addons:0.15.0, tensorflow_addons:0.14.0, tensorflow_addons:0.13.0, tensorflow_addons:0.12.1Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}memory variant better,score inconsistent[tensorflow, tensorflow_addons]25386:14, 25386:15, 25386:17tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}time variant better,memory variant better,score inconsistent[tensorflow, tensorflow_addons]25386:16tensorflow_addons:0.9.1Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}time variant better,score inconsistent[tensorflow, tensorflow_addons]25386:21, 25386:32tensorflow_addons:0.13.0, tensorflow_addons:0.11.2Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}time baseline better,score inconsistent[tensorflow, tensorflow_addons]25386:23, 25386:24, 25386:34, 25386:35tensorflow_addons:0.11.2, tensorflow_addons:0.10.0, tensorflow_addons:0.9.1, tensorflow_addons:0.8.3Type B
{' tensorflow.keras.metrics.CategoricalCrossentropy', ' tensorflow.keras.layers.Conv1D', ' tensorflow.Variable', ' tensorflow.clip_by_value', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Input', ' tensorflow_addons.layers.WeightNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.losses.CategoricalCrossentropy', ' tensorflow.keras.layers.Dense', 'tensorflow.keras.layers.Embedding', ' tensorflow.keras.Model'}time baseline better,memory baseline better,score inconsistent[tensorflow, tensorflow_addons]25386:36tensorflow_addons:0.7.1Type B
{' tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tensorflow.keras.layers.Dense', ' sklearn.preprocessing.StandardScaler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[scikit-learn, tensorflow]25406:1, 25406:2, 25406:3, 25406:4, 25406:5, 25406:6, 25406:7tensorflow:2.7.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0, tensorflow:1.15.2Type B
{' tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tensorflow.keras.layers.Dense', ' sklearn.preprocessing.StandardScaler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}score inconsistent[scikit-learn, tensorflow]25406:8, 25406:10, 25406:11, 25406:12, 25406:13, 25406:14, 25406:15, 25406:18, 25406:19, 25406:20, 25406:21, 25406:22, 25406:23, 25406:26, 25406:27tensorflow:1.14.0, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tensorflow.keras.layers.Dense', ' sklearn.preprocessing.StandardScaler', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[scikit-learn, tensorflow]25406:9, 25406:16, 25406:17, 25406:24, 25406:25, 25406:28, 25406:29, 25406:30, 25406:31, 25406:32tensorflow:1.13.1, tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.callbacks.ReduceLROnPlateau', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' keras.layers.Dense', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', 'tensorflow.keras.optimizers.Adam'}time baseline better,score inconsistent[keras, scikit-learn, tensorflow]25420:1tensorflow:2.7.0Type B
{' keras.callbacks.ReduceLROnPlateau', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' keras.layers.Dense', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', 'tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]25420:2, 25420:3, 25420:4, 25420:5, 25420:6, 25420:7, 25420:26, 25420:27, 25420:28, 25420:29, 25420:30, 25420:31, 25420:32tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.callbacks.ReduceLROnPlateau', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' keras.layers.Dense', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', 'tensorflow.keras.optimizers.Adam'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]25420:8, 25420:11, 25420:12, 25420:14, 25420:15, 25420:18, 25420:19tensorflow:2.0.0, tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.callbacks.ReduceLROnPlateau', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' keras.layers.Dense', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', 'tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]25420:9, 25420:13, 25420:16, 25420:17, 25420:20, 25420:21, 25420:22, 25420:24tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.callbacks.ReduceLROnPlateau', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' keras.layers.Dense', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', 'tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]25420:10, 25420:23tensorflow:2.4.1, tensorflow:2.3.1Type B
{' keras.callbacks.ReduceLROnPlateau', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split', ' keras.layers.Dense', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.Sequential', 'tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]25420:25tensorflow:2.2.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}time variant better,score inconsistent[keras, scikit-learn, tensorflow]25429:9, 25429:10, 25429:11, 25429:12, 25429:13, 25429:17, 25429:18, 25429:19, 25429:20, 25429:21, 25429:25, 25429:27tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}time variant better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]25429:14, 25429:15, 25429:16, 25429:22, 25429:23, 25429:24, 25429:30, 25429:55, 25429:56tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}score inconsistent[keras, scikit-learn, tensorflow]25429:26tensorflow:2.2.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}time variant better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]25429:28, 25429:49, 25429:53tensorflow:2.2.0, tensorflow:2.1.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}memory variant better,score inconsistent[keras, scikit-learn, tensorflow]25429:29, 25429:43, 25429:44, 25429:51, 25429:52, 25429:57tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]25429:31, 25429:32, 25429:46, 25429:54, 25429:62tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}memory variant better,[keras, scikit-learn, tensorflow]25429:41tensorflow:2.2.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]25429:42, 25429:45, 25429:61tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}memory baseline better,[keras, scikit-learn, tensorflow]25429:47tensorflow:2.2.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}time baseline better,memory baseline better,score inconsistent[keras, scikit-learn, tensorflow]25429:48, 25429:63, 25429:64tensorflow:2.2.0, tensorflow:2.0.0Type B
{' sklearn.preprocessing.LabelBinarizer', ' tensorflow.config.experimental_connect_to_cluster', ' keras.layers.Flatten', ' keras.layers.normalization.BatchNormalization', ' keras.layers.convolutional.Conv1D', ' sklearn.model_selection.train_test_split', 'tensorflow.distribute.experimental.TPUStrategy', ' keras.layers.Dense', ' keras.models.Sequential', ' tensorflow.tpu.experimental.initialize_tpu_system', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' keras.layers.Dropout', ' tensorflow.distribute.get_strategy'}time baseline better,memory variant better,score inconsistent[keras, scikit-learn, tensorflow]25429:50, 25429:58, 25429:59, 25429:60tensorflow:2.1.0, tensorflow:2.0.0Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time variant better,score inconsistent[catboost, scikit-learn]25477:1, 25477:2, 25477:3, 25477:4, 25477:5, 25477:6, 25477:7, 25477:8, 25477:9, 25477:10, 25477:11, 25477:12, 25477:13, 25477:15, 25477:16, 25477:17, 25477:19, 25477:21, 25477:22, 25477:23, 25477:24, 25477:25, 25477:26, 25477:27, 25477:28, 25477:29, 25477:30, 25477:31, 25477:32, 25477:34, 25477:35, 25477:36, 25477:37, 25477:39, 25477:41, 25477:43, 25477:44, 25477:45, 25477:46, 25477:47, 25477:48scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}score inconsistent[catboost, scikit-learn]25477:14, 25477:18, 25477:20, 25477:33, 25477:38, 25477:40, 25477:42scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.24.2Type B
{'catboost.CatBoostClassifier', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.train_test_split'}time baseline better,score inconsistent[catboost, scikit-learn]25477:49, 25477:50, 25477:51, 25477:52, 25477:53, 25477:54, 25477:55, 25477:56, 25477:57, 25477:58, 25477:59, 25477:60, 25477:61, 25477:62, 25477:63, 25477:64, 25477:65, 25477:66, 25477:67, 25477:68, 25477:69, 25477:70, 25477:71, 25477:72scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,score inconsistent[scikit-learn, tensorflow]25479:2, 25479:3, 25479:27, 25479:31, 25479:32tensorflow:2.4.1, tensorflow:2.3.1, tensorflow:2.2.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}score inconsistent[scikit-learn, tensorflow]25479:4, 25479:5, 25479:28, 25479:29tensorflow:2.2.0, tensorflow:2.1.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,[scikit-learn, tensorflow]25479:6tensorflow:2.0.0Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory baseline better,[scikit-learn, tensorflow]25479:7tensorflow:1.15.2Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory baseline better,score inconsistent[scikit-learn, tensorflow]25479:9, 25479:12, 25479:13tensorflow:1.13.1, tensorflow:2.4.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time variant better,memory variant better,score inconsistent[scikit-learn, tensorflow]25479:10, 25479:11, 25479:17, 25479:18, 25479:19, 25479:20, 25479:21tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}memory variant better,score inconsistent[scikit-learn, tensorflow]25479:14, 25479:15, 25479:16, 25479:22, 25479:23, 25479:24tensorflow:2.4.1, tensorflow:2.3.1Type B
{' tensorflow.keras.backend.clear_session', ' tensorflow.random.set_seed', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' sklearn.preprocessing.StandardScaler', 'tensorflow.keras.layers.BatchNormalization', ' sklearn.model_selection.train_test_split', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.utils.to_categorical', ' tensorflow.keras.Sequential', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.optimizers.Adam'}time baseline better,memory baseline better,score inconsistent[scikit-learn, tensorflow]25479:30tensorflow:2.2.0Type B
{'catboost.CatBoostClassifier', ' sklearn.metrics.log_loss', ' sklearn.model_selection.StratifiedKFold', ' catboost.Pool'}time baseline better,[catboost, scikit-learn]25505:6, 25505:7scikit-learn:1.0.1Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}memory variant better,score inconsistent[catboost, scikit-learn]25804:1, 25804:53scikit-learn:1.0.1, scikit-learn:0.22Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]25804:2, 25804:4, 25804:9, 25804:10, 25804:11, 25804:17, 25804:18, 25804:19, 25804:27, 25804:35, 25804:41, 25804:43scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]25804:3, 25804:5, 25804:42, 25804:54, 25804:55, 25804:56, 25804:58, 25804:61, 25804:66, 25804:67, 25804:68, 25804:69, 25804:71, 25804:72, 25804:73, 25804:75, 25804:76, 25804:77, 25804:78, 25804:80, 25804:81, 25804:82, 25804:85, 25804:86, 25804:87, 25804:88scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.22, scikit-learn:0.23.2, scikit-learn:0.22.1Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}time variant better,score inconsistent[catboost, scikit-learn]25804:12, 25804:20, 25804:21, 25804:28, 25804:44, 25804:45scikit-learn:0.22.1, scikit-learn:0.22Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}memory baseline better,score inconsistent[catboost, scikit-learn]25804:34scikit-learn:0.24.2Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}score inconsistent[catboost, scikit-learn]25804:36, 25804:37scikit-learn:0.22.1, scikit-learn:0.22Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}time baseline better,score inconsistent[catboost, scikit-learn]25804:49, 25804:52, 25804:65scikit-learn:1.0.1, scikit-learn:0.22.1Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]25804:50, 25804:51, 25804:59, 25804:74, 25804:83, 25804:84scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22.1Type B
{' sklearn.preprocessing.RobustScaler', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', 'catboost.CatBoostRegressor'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]25804:57, 25804:60scikit-learn:1.0.1, scikit-learn:0.22.1Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}time variant better,score inconsistent[scikit-learn, xgboost]25812:2, 25812:3, 25812:4, 25812:5, 25812:6, 25812:7, 25812:8, 25812:9, 25812:10, 25812:11, 25812:12, 25812:13, 25812:14, 25812:16, 25812:17, 25812:18, 25812:20, 25812:23, 25812:25, 25812:27, 25812:30, 25812:32, 25812:34, 25812:36, 25812:54, 25812:55xgboost:1.4.2, xgboost:1.3.3, xgboost:1.2.1, xgboost:1.1.1, xgboost:1.0.2, xgboost:0.90, xgboost:1.5.1Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory baseline better,score inconsistent[scikit-learn, xgboost]25812:15, 25812:21xgboost:1.5.1, xgboost:0.90Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,score inconsistent[scikit-learn, xgboost]25812:19, 25812:22, 25812:24, 25812:26, 25812:29, 25812:33, 25812:37, 25812:38, 25812:39, 25812:40, 25812:41, 25812:42, 25812:44, 25812:47, 25812:49, 25812:50, 25812:52xgboost:1.1.1, xgboost:1.5.1, xgboost:1.3.3, xgboost:1.4.2, xgboost:1.2.1, xgboost:1.0.2, xgboost:0.90Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}time baseline better,memory variant better,score inconsistent[scikit-learn, xgboost]25812:28, 25812:45, 25812:56xgboost:0.90, xgboost:1.3.3Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}score inconsistent[scikit-learn, xgboost]25812:31, 25812:43, 25812:46, 25812:51xgboost:1.3.3, xgboost:1.5.1, xgboost:1.2.1, xgboost:1.4.2Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}time variant better,memory variant better,score inconsistent[scikit-learn, xgboost]25812:35, 25812:48xgboost:0.90, xgboost:1.0.2Type B
{' sklearn.neighbors.KNeighborsRegressor', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.ensemble.RandomForestRegressor', ' sklearn.metrics.mean_squared_error', ' xgboost.XGBRegressor', 'sklearn.preprocessing.MinMaxScaler'}memory variant better,score inconsistent[scikit-learn, xgboost]25812:53xgboost:1.2.1Type B
{' xgboost.XGBRegressor', 'sklearn.model_selection.KFold', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.metrics.mean_squared_log_error'}memory variant better,[scikit-learn, xgboost]25822:6xgboost:1.0.2Type B
{' xgboost.XGBRegressor', 'sklearn.model_selection.KFold', ' sklearn.multioutput.MultiOutputRegressor', ' sklearn.metrics.mean_squared_log_error'}time baseline better,score inconsistent[scikit-learn, xgboost]25822:7xgboost:0.90Type B
{' sklearn.preprocessing.StandardScaler', 'catboost.CatBoostRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]25861:2, 25861:8, 25861:17, 25861:19, 25861:25, 25861:32, 25861:39, 25861:42, 25861:49, 25861:55, 25861:62, 25861:67, 25861:75, 25861:79, 25861:83, 25861:88scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.19.2, scikit-learn:0.20.3, scikit-learn:0.24.2, scikit-learn:0.21.3Type B
{' sklearn.preprocessing.StandardScaler', 'catboost.CatBoostRegressor'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]25861:3, 25861:6, 25861:7, 25861:9, 25861:15, 25861:18scikit-learn:1.0.1, scikit-learn:0.20.3, scikit-learn:0.24.2Type B
{' sklearn.preprocessing.StandardScaler', 'catboost.CatBoostRegressor'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]25861:4, 25861:10, 25861:35scikit-learn:1.0.1, scikit-learn:0.23.2Type B
{' sklearn.preprocessing.StandardScaler', 'catboost.CatBoostRegressor'}memory baseline better,score inconsistent[catboost, scikit-learn]25861:5, 25861:22, 25861:30, 25861:33scikit-learn:1.0.1, scikit-learn:0.21.3Type B
{' sklearn.preprocessing.StandardScaler', 'catboost.CatBoostRegressor'}memory variant better,score inconsistent[catboost, scikit-learn]25861:11, 25861:20, 25861:23, 25861:26, 25861:28, 25861:31, 25861:36scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.24.2Type B
{' sklearn.preprocessing.StandardScaler', 'catboost.CatBoostRegressor'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]25861:12, 25861:14, 25861:16, 25861:24, 25861:27, 25861:34, 25861:38, 25861:40, 25861:48, 25861:54, 25861:57, 25861:60, 25861:64, 25861:65, 25861:69, 25861:73, 25861:77, 25861:80, 25861:81scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.19.2, scikit-learn:0.23.2, scikit-learn:0.24.2, scikit-learn:1.0.1, scikit-learn:0.22Type B
{' sklearn.metrics.mean_squared_log_error', ' xgboost.XGBRegressor', 'sklearn.model_selection.train_test_split'}memory baseline better,[scikit-learn, xgboost]25875:2xgboost:1.4.2Type B
{' sklearn.pipeline.Pipeline', ' sklearn.metrics.mean_squared_log_error', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.TimeSeriesSplit', 'catboost.CatBoostRegressor'}time variant better,memory variant better,[catboost, scikit-learn]25885:2, 25885:3, 25885:6, 25885:11, 25885:12, 25885:13, 25885:16, 25885:23scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.20.3Type B
{' sklearn.pipeline.Pipeline', ' sklearn.metrics.mean_squared_log_error', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.TimeSeriesSplit', 'catboost.CatBoostRegressor'}time variant better,memory baseline better,[catboost, scikit-learn]25885:4, 25885:5, 25885:7, 25885:8, 25885:9, 25885:10, 25885:14, 25885:15, 25885:55, 25885:57, 25885:65, 25885:72, 25885:81, 25885:82, 25885:85, 25885:87scikit-learn:1.0.1, scikit-learn:0.21.3, scikit-learn:0.20.3, scikit-learn:0.19.2, scikit-learn:0.24.2, scikit-learn:0.22Type B
{' sklearn.pipeline.Pipeline', ' sklearn.metrics.mean_squared_log_error', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.TimeSeriesSplit', 'catboost.CatBoostRegressor'}memory variant better,[catboost, scikit-learn]25885:17, 25885:18, 25885:19, 25885:21, 25885:24, 25885:25, 25885:28, 25885:29, 25885:31, 25885:32, 25885:33, 25885:34, 25885:35, 25885:36, 25885:37, 25885:38, 25885:39, 25885:42, 25885:43, 25885:45, 25885:47, 25885:48scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.22, scikit-learn:0.19.2, scikit-learn:0.22.1, scikit-learn:0.20.3, scikit-learn:0.21.3Type B
{' sklearn.pipeline.Pipeline', ' sklearn.metrics.mean_squared_log_error', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.TimeSeriesSplit', 'catboost.CatBoostRegressor'}memory baseline better,[catboost, scikit-learn]25885:20, 25885:22, 25885:26, 25885:27, 25885:30, 25885:40, 25885:41, 25885:44, 25885:46, 25885:51, 25885:52, 25885:64, 25885:71, 25885:78scikit-learn:0.22.1, scikit-learn:0.21.3, scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.19.2, scikit-learn:1.0.1, scikit-learn:0.20.3Type B
{' sklearn.pipeline.Pipeline', ' sklearn.metrics.mean_squared_log_error', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.TimeSeriesSplit', 'catboost.CatBoostRegressor'}time baseline better,memory variant better,[catboost, scikit-learn]25885:49, 25885:50scikit-learn:1.0.1, scikit-learn:0.24.2Type B
{' sklearn.pipeline.Pipeline', ' sklearn.metrics.mean_squared_log_error', ' sklearn.preprocessing.StandardScaler', ' sklearn.model_selection.TimeSeriesSplit', 'catboost.CatBoostRegressor'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]25885:58, 25885:61, 25885:66, 25885:67scikit-learn:0.24.2, scikit-learn:0.22, scikit-learn:0.23.2Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time variant better,memory baseline better,[catboost, scikit-learn]25892:2, 25892:3, 25892:6, 25892:7scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time variant better,memory variant better,[catboost, scikit-learn]25892:4, 25892:5, 25892:8scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time variant better,memory variant better,score inconsistent[catboost, scikit-learn]25892:9, 25892:12, 25892:13, 25892:16, 25892:17, 25892:20, 25892:21, 25892:24, 25892:25, 25892:28, 25892:29, 25892:32, 25892:33, 25892:36, 25892:37, 25892:40, 25892:41, 25892:44, 25892:45, 25892:48scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time variant better,memory baseline better,score inconsistent[catboost, scikit-learn]25892:10, 25892:11, 25892:14, 25892:18, 25892:19, 25892:26, 25892:27, 25892:34, 25892:35, 25892:42, 25892:43scikit-learn:0.24.2, scikit-learn:0.23.2, scikit-learn:0.21.3Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time variant better,score inconsistent[catboost, scikit-learn]25892:15, 25892:22, 25892:23, 25892:30, 25892:31, 25892:38, 25892:39, 25892:46, 25892:47scikit-learn:0.20.3, scikit-learn:0.21.3Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time baseline better,memory variant better,score inconsistent[catboost, scikit-learn]25892:49, 25892:52, 25892:53, 25892:56, 25892:57, 25892:60, 25892:61, 25892:64, 25892:65, 25892:68, 25892:69, 25892:72, 25892:73, 25892:76, 25892:77, 25892:80scikit-learn:1.0.1, scikit-learn:0.22.1, scikit-learn:0.22, scikit-learn:0.19.2Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time baseline better,memory baseline better,score inconsistent[catboost, scikit-learn]25892:50, 25892:51, 25892:58, 25892:59, 25892:66, 25892:67, 25892:74, 25892:75scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' sklearn.multioutput.MultiOutputRegressor', 'catboost.CatBoostRegressor'}time baseline better,score inconsistent[catboost, scikit-learn]25892:54, 25892:55, 25892:62, 25892:63, 25892:70, 25892:71, 25892:78, 25892:79scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' tensorflow.keras.backend.get_value', ' tensorflow.keras.backend.clear_session', ' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.models.Model', ' tensorflow.keras.callbacks.ModelCheckpoint', ' sklearn.model_selection.GroupKFold', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.distribute.get_strategy', ' tensorflow.config.experimental_connect_to_cluster', 'tensorflow.distribute.experimental.TPUStrategy', ' tensorflow.keras.layers.Dropout', ' tensorflow.distribute.cluster_resolver.TPUClusterResolver', ' tensorflow.metrics.auc', ' tensorflow.keras.backend.set_value', ' tensorflow.config.optimizer.set_jit', 'shap', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.SpatialDropout1D', ' tensorflow.keras.mixed_precision.experimental.Policy', ' tensorflow.tpu.experimental.initialize_tpu_system', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.layers.Dense', ' sklearn.preprocessing.LabelEncoder', ' tensorflow.keras.layers.concatenate', ' tensorflow.keras.layers.Embedding', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' tensorflow.keras.mixed_precision.experimental.set_policy'}time baseline better,memory variant better,[scikit-learn, tensorflow]1096:9tensorflow:2.4.1Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}memory baseline better,[scikit-learn, xgboost]11524:9, 11524:10, 11524:13, 11524:20, 11524:43xgboost:1.4.2, xgboost:1.3.3, xgboost:1.0.2, xgboost:1.5.1Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}time variant better,memory baseline better,[scikit-learn, xgboost]11524:11, 11524:12, 11524:18, 11524:19xgboost:1.2.1, xgboost:1.1.1Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory baseline better,[scikit-learn, xgboost]11524:15, 11524:16, 11524:17, 11524:22, 11524:23, 11524:36, 11524:37, 11524:44xgboost:1.5.1, xgboost:1.4.2, xgboost:1.3.3Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}memory variant better,[scikit-learn, xgboost]11524:24, 11524:52xgboost:1.3.3Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}time variant better,memory variant better,[scikit-learn, xgboost]11524:25, 11524:26, 11524:53, 11524:54xgboost:1.2.1, xgboost:1.1.1Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}time baseline better,memory variant better,[scikit-learn, xgboost]11524:27, 11524:55xgboost:1.0.2Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}time baseline better,[scikit-learn, xgboost]11524:38, 11524:41, 11524:48, 11524:50xgboost:1.3.3, xgboost:1.0.2, xgboost:1.5.1Type B
{'sklearn.metrics.r2_score', ' xgboost.sklearn.XGBRegressor', ' sklearn.metrics.mean_squared_error', ' sklearn.model_selection.train_test_split', ' sklearn.metrics.make_scorer', ' sklearn.clone', ' sklearn.metrics.mean_absolute_error'}time variant better,[scikit-learn, xgboost]11524:39, 11524:40, 11524:46, 11524:47xgboost:1.2.1, xgboost:1.1.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.metrics.Recall', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.metrics.Precision', ' tensorflow.keras.applications.ResNet152V2', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.metrics.BinaryAccuracy', ' sklearn.metrics.confusion_matrix'}time variant better,[scikit-learn, tensorflow]17209:5, 17209:6tensorflow:2.7.0Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.metrics.Recall', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.metrics.Precision', ' tensorflow.keras.applications.ResNet152V2', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.metrics.BinaryAccuracy', ' sklearn.metrics.confusion_matrix'}memory variant better,[scikit-learn, tensorflow]17209:9, 17209:13tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.metrics.Recall', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.metrics.Precision', ' tensorflow.keras.applications.ResNet152V2', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.metrics.BinaryAccuracy', ' sklearn.metrics.confusion_matrix'}time variant better,memory variant better,[scikit-learn, tensorflow]17209:10, 17209:11, 17209:12, 17209:14, 17209:15, 17209:16tensorflow:2.4.1Type B
{' tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.metrics.Recall', ' sklearn.metrics.cohen_kappa_score', ' tensorflow.keras.metrics.Precision', ' tensorflow.keras.applications.ResNet152V2', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.callbacks.ModelCheckpoint', 'tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.preprocessing.image.ImageDataGenerator', ' tensorflow.keras.layers.Activation', ' tensorflow.keras.metrics.AUC', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.metrics.BinaryAccuracy', ' sklearn.metrics.confusion_matrix'}time baseline better,memory baseline better,[scikit-learn, tensorflow]17209:25, 17209:26, 17209:27, 17209:28, 17209:29, 17209:30, 17209:31, 17209:32tensorflow:2.2.0Type B
{' keras.layers.Conv2D', ' keras.layers.BatchNormalization', ' keras.layers.Flatten', ' keras.layers.LeakyReLU', ' keras.optimizers.adam', ' keras.layers.MaxPooling2D', ' keras.layers.Dense', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' keras.models.Sequential', ' keras.optimizers.RMSprop', ' tensorflow.keras.callbacks.EarlyStopping', ' keras.layers.Dropout', 'tensorflow.keras.preprocessing.image.ImageDataGenerator'}memory baseline better,[keras, tensorflow]18006:4tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory variant better,[keras, scikit-learn, tensorflow]18053:10, 18053:11, 18053:12, 18053:13tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time variant better,memory baseline better,[keras, scikit-learn, tensorflow]18053:14, 18053:15, 18053:16tensorflow:2.4.1Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory variant better,[keras, scikit-learn, tensorflow]18053:17, 18053:18, 18053:21, 18053:26, 18053:27, 18053:28, 18053:29, 18053:41, 18053:42, 18053:44, 18053:45, 18053:49, 18053:50, 18053:51, 18053:52, 18053:53tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory variant better,[keras, scikit-learn, tensorflow]18053:19, 18053:20, 18053:25, 18053:43tensorflow:2.3.1, tensorflow:2.2.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}memory baseline better,[keras, scikit-learn, tensorflow]18053:22, 18053:23, 18053:24, 18053:31, 18053:32, 18053:46, 18053:47, 18053:55, 18053:56tensorflow:2.3.1, tensorflow:2.2.0, tensorflow:2.1.0Type B
{' keras.utils.np_utils.to_categorical', ' keras.layers.Conv2D', ' keras.layers.Flatten', ' keras.layers.Dense', ' keras.models.Sequential', ' keras.layers.MaxPooling2D', ' keras.preprocessing.image.ImageDataGenerator', 'sklearn.model_selection.train_test_split'}time baseline better,memory baseline better,[keras, scikit-learn, tensorflow]18053:30, 18053:48, 18053:54tensorflow:2.2.0, tensorflow:2.1.0Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}memory baseline better,[nltk, scikit-learn]19653:2, 19653:10, 19653:26, 19653:27scikit-learn:1.0.1, scikit-learn:0.24.2, scikit-learn:0.23.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}time baseline better,memory baseline better,[nltk, scikit-learn]19653:3, 19653:11, 19653:18, 19653:19scikit-learn:1.0.1, scikit-learn:0.23.2, scikit-learn:0.24.2Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}time variant better,[nltk, scikit-learn]19653:6, 19653:7, 19653:14, 19653:22, 19653:23, 19653:31scikit-learn:0.21.3, scikit-learn:0.20.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}time variant better,memory variant better,[nltk, scikit-learn]19653:8, 19653:16, 19653:24, 19653:30, 19653:32scikit-learn:0.19.2, scikit-learn:0.21.3Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}time baseline better,[nltk, scikit-learn]19653:9scikit-learn:1.0.1Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}memory variant better,[nltk, scikit-learn]19653:20, 19653:21, 19653:28scikit-learn:0.22.1, scikit-learn:0.22Type B
{' nltk.stem.WordNetLemmatizer', ' sklearn.feature_extraction.text.TfidfVectorizer', ' nltk.download', ' sklearn.model_selection.train_test_split', 'sklearn.linear_model.LogisticRegression', ' sklearn.preprocessing.LabelEncoder', ' sklearn.metrics.classification_report'}time baseline better,memory variant better,[nltk, scikit-learn]19653:29scikit-learn:0.22Type B
{' sklearn.model_selection.KFold', ' sklearn.linear_model.Ridge', 'tensorflow.random.set_seed'}time baseline better,memory baseline better,[scikit-learn, tensorflow]22378:2, 22378:3, 22378:4, 22378:5, 22378:6, 22378:7, 22378:8tensorflow:2.7.0Type B
{' sklearn.model_selection.KFold', ' sklearn.linear_model.Ridge', 'tensorflow.random.set_seed'}time baseline better,[scikit-learn, tensorflow]22378:10, 22378:12, 22378:13, 22378:16tensorflow:2.4.1Type B
{' sklearn.model_selection.KFold', ' sklearn.linear_model.Ridge', 'tensorflow.random.set_seed'}memory variant better,[scikit-learn, tensorflow]22378:24, 22378:25, 22378:26tensorflow:2.3.1, tensorflow:2.2.0Type B
{' sklearn.model_selection.KFold', ' sklearn.linear_model.Ridge', 'tensorflow.random.set_seed'}time variant better,memory variant better,[scikit-learn, tensorflow]22378:27, 22378:28, 22378:29, 22378:30, 22378:31, 22378:32, 22378:33, 22378:36, 22378:37, 22378:38, 22378:39, 22378:40, 22378:52, 22378:53, 22378:54, 22378:55, 22378:56tensorflow:2.2.0, tensorflow:2.1.0, tensorflow:2.0.0Type B
{' sklearn.model_selection.KFold', ' sklearn.linear_model.Ridge', 'tensorflow.random.set_seed'}time variant better,[scikit-learn, tensorflow]22378:34, 22378:49, 22378:50, 22378:51tensorflow:2.1.0, tensorflow:2.0.0Type B
{' optuna.create_study', 'xgboost.XGBRegressor'}memory variant better,[optuna, xgboost]24471:2, 24471:8, 24471:9, 24471:15, 24471:16, 24471:22, 24471:23, 24471:29, 24471:30, 24471:36, 24471:43, 24471:44, 24471:50, 24471:51xgboost:1.4.2, xgboost:1.5.1Type B
{' optuna.create_study', 'xgboost.XGBRegressor'}memory baseline better,[optuna, xgboost]24471:4, 24471:5, 24471:11, 24471:12, 24471:18, 24471:19, 24471:25, 24471:26, 24471:32, 24471:33, 24471:39, 24471:40, 24471:46, 24471:47, 24471:53, 24471:54xgboost:1.2.1, xgboost:1.1.1Type B
{' optuna.create_study', 'xgboost.XGBRegressor'}time baseline better,memory variant better,[optuna, xgboost]24471:37xgboost:1.4.2Type B
{' optuna.create_study', 'xgboost.XGBRegressor'}time baseline better,[optuna, xgboost]24471:38xgboost:1.3.3Type B
{' sklearn.preprocessing.MinMaxScaler', ' sklearn.model_selection.StratifiedKFold', ' tensorflow.keras.layers.Input', ' tensorflow.keras.layers.Conv2D', 'tensorflow.keras.layers.BatchNormalization', ' tensorflow.keras.layers.Flatten', ' tensorflow.keras.layers.Dropout', ' tensorflow.keras.callbacks.ReduceLROnPlateau', ' sklearn.metrics.roc_auc_score', ' tensorflow.keras.losses.BinaryCrossentropy', ' tensorflow.keras.callbacks.EarlyStopping', ' tensorflow.keras.optimizers.RMSprop', ' tensorflow.keras.layers.Dense', ' tensorflow.keras.metrics.BinaryAccuracy', ' tensorflow.keras.Model'}time baseline better,[scikit-learn, tensorflow]24564:9tensorflow:2.0.0Type B
Help ×
help