Pipeline
Compete Name:getting-0-80-gradientboosting-40-lines-of-code
Pipeline Name:
Experimental Results
Pipeline ID | Execution time | Memory | Score | Library & Version |
---|---|---|---|---|
37758 | 6.399752 | 63.9267110825 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 6.399752 | 63.9267110825 | 0.7929844738355377 | scikit-learn,1.0.1 |
37758 | 6.1154196999999995 | 63.6102743149 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 6.1154196999999995 | 63.6102743149 | 0.7929844738355377 | scikit-learn,0.24.2 |
37758 | 6.1106249 | 63.4132909775 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 6.1106249 | 63.4132909775 | 0.7929844738355377 | scikit-learn,0.23.2 |
37758 | 6.0709706 | 62.6333770752 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 6.0709706 | 62.6333770752 | 0.7929844738355377 | scikit-learn,0.22.1 |
37758 | 6.0393369 | 62.6167287827 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 6.0393369 | 62.6167287827 | 0.7929844738355377 | scikit-learn,0.22 |
37758 | 5.8332987 | 63.6305112839 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 5.8332987 | 63.6305112839 | 0.7929844738355377 | scikit-learn,0.21.3 |
37758 | 5.5840228 | 61.8180217743 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 5.5840228 | 61.8180217743 | 0.7929844738355377 | scikit-learn,0.20.3 |
37758 | 5.4469979 | 59.032957077 | 0.7929844738355377 | pandas,1.2.4 |
37758 | 5.4469979 | 59.032957077 | 0.7929844738355377 | scikit-learn,0.19.2 |
37758 | 6.2303868 | 63.3720159531 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 6.2303868 | 63.3720159531 | 0.7929844738355377 | scikit-learn,1.0.1 |
37758 | 6.1015516 | 63.0587921143 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 6.1015516 | 63.0587921143 | 0.7929844738355377 | scikit-learn,0.24.2 |
37758 | 6.0582909 | 62.8617839813 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 6.0582909 | 62.8617839813 | 0.7929844738355377 | scikit-learn,0.23.2 |
37758 | 6.0502163 | 62.082034111 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 6.0502163 | 62.082034111 | 0.7929844738355377 | scikit-learn,0.22.1 |
37758 | 6.0069073 | 62.065987587 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 6.0069073 | 62.065987587 | 0.7929844738355377 | scikit-learn,0.22 |
37758 | 5.8215817 | 63.0790977478 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 5.8215817 | 63.0790977478 | 0.7929844738355377 | scikit-learn,0.21.3 |
37758 | 5.538406200000001 | 61.268078804 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 5.538406200000001 | 61.268078804 | 0.7929844738355377 | scikit-learn,0.20.3 |
37758 | 5.4592224 | 57.697180748 | 0.7929844738355377 | pandas,1.1.5 |
37758 | 5.4592224 | 57.697180748 | 0.7929844738355377 | scikit-learn,0.19.2 |
37758 | 6.2333692 | 62.8027191162 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 6.2333692 | 62.8027191162 | 0.7929844738355377 | scikit-learn,1.0.1 |
37758 | 6.133443400000001 | 62.4848747253 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 6.133443400000001 | 62.4848747253 | 0.7929844738355377 | scikit-learn,0.24.2 |
37758 | 6.0613594 | 62.2876329422 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 6.0613594 | 62.2876329422 | 0.7929844738355377 | scikit-learn,0.23.2 |
37758 | 6.2667928999999996 | 61.5080404282 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 6.2667928999999996 | 61.5080404282 | 0.7929844738355377 | scikit-learn,0.22.1 |
37758 | 6.235772300000001 | 61.4918680191 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 6.235772300000001 | 61.4918680191 | 0.7929844738355377 | scikit-learn,0.22 |
37758 | 6.048938799999999 | 62.5048065186 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 6.048938799999999 | 62.5048065186 | 0.7929844738355377 | scikit-learn,0.21.3 |
37758 | 5.73413 | 60.694062233 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 5.73413 | 60.694062233 | 0.7929844738355377 | scikit-learn,0.20.3 |
37758 | 5.6391857 | 56.6580944061 | 0.7929844738355377 | pandas,1.0.5 |
37758 | 5.6391857 | 56.6580944061 | 0.7929844738355377 | scikit-learn,0.19.2 |
37758 | 8.008859 | 63.5158090591 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 8.008859 | 63.5158090591 | 0.7929844738355377 | scikit-learn,1.0.1 |
37758 | 7.577943 | 63.1970977783 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.577943 | 63.1970977783 | 0.7929844738355377 | scikit-learn,0.24.2 |
37758 | 7.6868095 | 63.0023326874 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.6868095 | 63.0023326874 | 0.7929844738355377 | scikit-learn,0.23.2 |
37758 | 7.6852759 | 62.2125005722 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.6852759 | 62.2125005722 | 0.7929844738355377 | scikit-learn,0.22.1 |
37758 | 7.7219948 | 62.2002220154 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.7219948 | 62.2002220154 | 0.7929844738355377 | scikit-learn,0.22 |
37758 | 7.4656125 | 62.4981737137 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.4656125 | 62.4981737137 | 0.7929844738355377 | scikit-learn,0.21.3 |
37758 | 7.2282344 | 60.6867303848 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.2282344 | 60.6867303848 | 0.7929844738355377 | scikit-learn,0.20.3 |
37758 | 7.039723899999999 | 58.6246099472 | 0.7929844738355377 | pandas,0.25.3 |
37758 | 7.039723899999999 | 58.6246099472 | 0.7929844738355377 | scikit-learn,0.19.2 |
37758 | 7.9359072 | 63.5960102081 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 7.9359072 | 63.5960102081 | 0.7929844738355377 | scikit-learn,1.0.1 |
37758 | 7.5218491 | 63.2760095596 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 7.5218491 | 63.2760095596 | 0.7929844738355377 | scikit-learn,0.24.2 |
37758 | 7.7696324 | 63.0801763535 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 7.7696324 | 63.0801763535 | 0.7929844738355377 | scikit-learn,0.23.2 |
37758 | 7.6911802 | 62.2986717224 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 7.6911802 | 62.2986717224 | 0.7929844738355377 | scikit-learn,0.22.1 |
37758 | 7.4977168 | 62.2832670212 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 7.4977168 | 62.2832670212 | 0.7929844738355377 | scikit-learn,0.22 |
37758 | 7.2365881 | 62.5815324783 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 7.2365881 | 62.5815324783 | 0.7929844738355377 | scikit-learn,0.21.3 |
37758 | 6.976988599999999 | 60.7681913376 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 6.976988599999999 | 60.7681913376 | 0.7929844738355377 | scikit-learn,0.20.3 |
37758 | 6.846897599999999 | 58.7515068054 | 0.7929844738355377 | pandas,0.24.2 |
37758 | 6.846897599999999 | 58.7515068054 | 0.7929844738355377 | scikit-learn,0.19.2 |
37758 | 6.289883 | 62.393819809 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 6.289883 | 62.393819809 | 0.7929844738355377 | scikit-learn,1.0.1 |
37758 | 6.0988093 | 62.0830965042 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 6.0988093 | 62.0830965042 | 0.7929844738355377 | scikit-learn,0.24.2 |
37758 | 6.130626 | 61.8827676773 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 6.130626 | 61.8827676773 | 0.7929844738355377 | scikit-learn,0.23.2 |
37758 | 6.0482602 | 61.1047010422 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 6.0482602 | 61.1047010422 | 0.7929844738355377 | scikit-learn,0.22.1 |
37758 | 6.0569404 | 61.0835590363 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 6.0569404 | 61.0835590363 | 0.7929844738355377 | scikit-learn,0.22 |
37758 | 5.7816522 | 61.3792448044 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 5.7816522 | 61.3792448044 | 0.7929844738355377 | scikit-learn,0.21.3 |
37758 | 5.5413551 | 59.5642166138 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 5.5413551 | 59.5642166138 | 0.7929844738355377 | scikit-learn,0.20.3 |
37758 | 5.4588634 | 57.5569124222 | 0.7929844738355377 | pandas,0.23.4 |
37758 | 5.4588634 | 57.5569124222 | 0.7929844738355377 | scikit-learn,0.19.2 |