Pipeline
Compete Name:tabular-playground-series-solution
Pipeline Name:
Experimental Results
Pipeline ID | Execution time | Memory | Score | Library & Version |
---|---|---|---|---|
31753 | 49.7858751 | 73.0153827667 | 0.02665214501114367 | numpy,1.17.4 |
31753 | 49.7858751 | 73.0153827667 | 0.02665214501114367 | scikit-learn,1.0.1 |
31753 | 50.134166500000006 | 75.453997612 | 0.02665214501114367 | numpy,1.17.4 |
31753 | 50.134166500000006 | 75.453997612 | 0.02665214501114367 | scikit-learn,0.24.2 |
31753 | 36.064617 | 75.2523708344 | 0.02665214501114367 | numpy,1.17.4 |
31753 | 36.064617 | 75.2523708344 | 0.02665214501114367 | scikit-learn,0.23.2 |
31753 | 35.820448500000005 | 71.661231041 | 0.026622314501977357 | numpy,1.17.4 |
31753 | 35.820448500000005 | 71.661231041 | 0.026622314501977357 | scikit-learn,0.22.1 |
31753 | 35.787378000000004 | 71.6445856094 | 0.026622314501977357 | numpy,1.17.4 |
31753 | 35.787378000000004 | 71.6445856094 | 0.026622314501977357 | scikit-learn,0.22 |
31753 | 48.8964697 | 72.0034217834 | 0.03214475169784462 | numpy,1.17.4 |
31753 | 48.8964697 | 72.0034217834 | 0.03214475169784462 | scikit-learn,0.21.3 |
31753 | 48.5786506 | 71.4513101578 | 0.03214475169784462 | numpy,1.17.4 |
31753 | 48.5786506 | 71.4513101578 | 0.03214475169784462 | scikit-learn,0.20.3 |
31753 | 48.5910697 | 69.8218927383 | 0.03214475169784462 | numpy,1.17.4 |
31753 | 48.5910697 | 69.8218927383 | 0.03214475169784462 | scikit-learn,0.19.2 |
31753 | 49.7083781 | 73.9165678024 | 0.02665214501114367 | numpy,1.18.5 |
31753 | 49.7083781 | 73.9165678024 | 0.02665214501114367 | scikit-learn,1.0.1 |
31753 | 50.8286736 | 76.3586139679 | 0.02665214501114367 | numpy,1.18.5 |
31753 | 50.8286736 | 76.3586139679 | 0.02665214501114367 | scikit-learn,0.24.2 |
31753 | 35.9574484 | 76.1583404541 | 0.02665214501114367 | numpy,1.18.5 |
31753 | 35.9574484 | 76.1583404541 | 0.02665214501114367 | scikit-learn,0.23.2 |
31753 | 35.8077562 | 72.5667457581 | 0.026622314501977357 | numpy,1.18.5 |
31753 | 35.8077562 | 72.5667457581 | 0.026622314501977357 | scikit-learn,0.22.1 |
31753 | 35.968304700000004 | 72.5505828857 | 0.026622314501977357 | numpy,1.18.5 |
31753 | 35.968304700000004 | 72.5505828857 | 0.026622314501977357 | scikit-learn,0.22 |
31753 | 49.027193600000004 | 72.9085712433 | 0.03214475169784462 | numpy,1.18.5 |
31753 | 49.027193600000004 | 72.9085712433 | 0.03214475169784462 | scikit-learn,0.21.3 |
31753 | 48.460203 | 72.3574857712 | 0.03214475169784462 | numpy,1.18.5 |
31753 | 48.460203 | 72.3574857712 | 0.03214475169784462 | scikit-learn,0.20.3 |
31753 | 48.3647891 | 70.7277336121 | 0.03214475169784462 | numpy,1.18.5 |
31753 | 48.3647891 | 70.7277336121 | 0.03214475169784462 | scikit-learn,0.19.2 |
31753 | 49.4765617 | 74.0295934677 | 0.02665214501114367 | numpy,1.19.5 |
31753 | 49.4765617 | 74.0295934677 | 0.02665214501114367 | scikit-learn,1.0.1 |
31753 | 49.3975715 | 76.4690504074 | 0.02665214501114367 | numpy,1.19.5 |
31753 | 49.3975715 | 76.4690504074 | 0.02665214501114367 | scikit-learn,0.24.2 |
31753 | 35.6629954 | 76.2680644989 | 0.02665214501114367 | numpy,1.19.5 |
31753 | 35.6629954 | 76.2680644989 | 0.02665214501114367 | scikit-learn,0.23.2 |
31753 | 35.4878012 | 72.6769695282 | 0.026622314501977357 | numpy,1.19.5 |
31753 | 35.4878012 | 72.6769695282 | 0.026622314501977357 | scikit-learn,0.22.1 |
31753 | 35.4188538 | 72.6600351334 | 0.026622314501977357 | numpy,1.19.5 |
31753 | 35.4188538 | 72.6600351334 | 0.026622314501977357 | scikit-learn,0.22 |
31753 | 26.002500100000002 | 73.0165452957 | 0.03214475169784462 | numpy,1.19.5 |
31753 | 26.002500100000002 | 73.0165452957 | 0.03214475169784462 | scikit-learn,0.21.3 |
31753 | 26.1992337 | 72.4656257629 | 0.03214475169784462 | numpy,1.19.5 |
31753 | 26.1992337 | 72.4656257629 | 0.03214475169784462 | scikit-learn,0.20.3 |
31753 | 26.0773567 | 70.835401535 | 0.03214475169784462 | numpy,1.19.5 |
31753 | 26.0773567 | 70.835401535 | 0.03214475169784462 | scikit-learn,0.19.2 |