Pipeline
Compete Name:competition-1
Pipeline Name:
Experimental Results
Pipeline ID | Execution time | Memory | Score | Library & Version |
---|---|---|---|---|
31751 | 14.2956175 | 64.2776193619 | 21.47249239543726 | numpy,1.17.4 |
31751 | 14.2956175 | 64.2776193619 | 21.47249239543726 | scikit-learn,1.0.1 |
31751 | 14.251233 | 66.6873979568 | 21.47249239543726 | numpy,1.17.4 |
31751 | 14.251233 | 66.6873979568 | 21.47249239543726 | scikit-learn,0.24.2 |
31751 | 14.359623299999999 | 66.4867048264 | 21.47249239543726 | numpy,1.17.4 |
31751 | 14.359623299999999 | 66.4867048264 | 21.47249239543726 | scikit-learn,0.23.2 |
31751 | 13.788805700000001 | 62.9287157059 | 21.47249239543726 | numpy,1.17.4 |
31751 | 13.788805700000001 | 62.9287157059 | 21.47249239543726 | scikit-learn,0.22.1 |
31751 | 13.7955303 | 62.9128465652 | 21.47249239543726 | numpy,1.17.4 |
31751 | 13.7955303 | 62.9128465652 | 21.47249239543726 | scikit-learn,0.22 |
31751 | 13.871808 | 63.2421102524 | 21.47249239543726 | numpy,1.17.4 |
31751 | 13.871808 | 63.2421102524 | 21.47249239543726 | scikit-learn,0.21.3 |
31751 | 13.3717172 | 61.3175764084 | 21.47249239543726 | numpy,1.17.4 |
31751 | 13.3717172 | 61.3175764084 | 21.47249239543726 | scikit-learn,0.20.3 |
31751 | 13.4694323 | 59.8505897522 | 21.47249239543726 | numpy,1.17.4 |
31751 | 13.4694323 | 59.8505897522 | 21.47249239543726 | scikit-learn,0.19.2 |
31751 | 14.1568805 | 65.1758069992 | 21.47249239543726 | numpy,1.18.5 |
31751 | 14.1568805 | 65.1758069992 | 21.47249239543726 | scikit-learn,1.0.1 |
31751 | 14.0780523 | 67.593791008 | 21.47249239543726 | numpy,1.18.5 |
31751 | 14.0780523 | 67.593791008 | 21.47249239543726 | scikit-learn,0.24.2 |
31751 | 14.1272502 | 67.392870903 | 21.47249239543726 | numpy,1.18.5 |
31751 | 14.1272502 | 67.392870903 | 21.47249239543726 | scikit-learn,0.23.2 |
31751 | 13.9213345 | 63.8320770264 | 21.47249239543726 | numpy,1.18.5 |
31751 | 13.9213345 | 63.8320770264 | 21.47249239543726 | scikit-learn,0.22.1 |
31751 | 13.862787 | 63.8150720596 | 21.47249239543726 | numpy,1.18.5 |
31751 | 13.862787 | 63.8150720596 | 21.47249239543726 | scikit-learn,0.22 |
31751 | 13.904724400000001 | 64.1443624496 | 21.47249239543726 | numpy,1.18.5 |
31751 | 13.904724400000001 | 64.1443624496 | 21.47249239543726 | scikit-learn,0.21.3 |
31751 | 13.367148199999999 | 62.2197647095 | 21.47249239543726 | numpy,1.18.5 |
31751 | 13.367148199999999 | 62.2197647095 | 21.47249239543726 | scikit-learn,0.20.3 |
31751 | 13.5062739 | 60.7529125214 | 21.47249239543726 | numpy,1.18.5 |
31751 | 13.5062739 | 60.7529125214 | 21.47249239543726 | scikit-learn,0.19.2 |
31751 | 14.0828305 | 65.2955265045 | 21.47249239543726 | numpy,1.19.5 |
31751 | 14.0828305 | 65.2955265045 | 21.47249239543726 | scikit-learn,1.0.1 |
31751 | 14.0687293 | 67.7106800079 | 21.47249239543726 | numpy,1.19.5 |
31751 | 14.0687293 | 67.7106800079 | 21.47249239543726 | scikit-learn,0.24.2 |
31751 | 14.156874599999998 | 67.508890152 | 21.47249239543726 | numpy,1.19.5 |
31751 | 14.156874599999998 | 67.508890152 | 21.47249239543726 | scikit-learn,0.23.2 |
31751 | 13.8260953 | 63.9500494003 | 21.47249239543726 | numpy,1.19.5 |
31751 | 13.8260953 | 63.9500494003 | 21.47249239543726 | scikit-learn,0.22.1 |
31751 | 14.1128979 | 63.9328536987 | 21.47249239543726 | numpy,1.19.5 |
31751 | 14.1128979 | 63.9328536987 | 21.47249239543726 | scikit-learn,0.22 |
31751 | 13.9169501 | 64.2615251541 | 21.47249239543726 | numpy,1.19.5 |
31751 | 13.9169501 | 64.2615251541 | 21.47249239543726 | scikit-learn,0.21.3 |
31751 | 13.3592998 | 62.335392952 | 21.47249239543726 | numpy,1.19.5 |
31751 | 13.3592998 | 62.335392952 | 21.47249239543726 | scikit-learn,0.20.3 |
31751 | 13.492155 | 60.8688583374 | 21.47249239543726 | numpy,1.19.5 |
31751 | 13.492155 | 60.8688583374 | 21.47249239543726 | scikit-learn,0.19.2 |